
Change of Optimal Values: A Pre-calculated Metric

Fang Bai

Abstract— A variety of optimization problems takes the form
of a minimum norm optimization. In this paper, we study the
change of optimal values between two incrementally constructed
least norm optimization problems, with new measurements
included in the second one. We prove an exact equation to
calculate the change of optimal values in the linear least norm
optimization problem. With the result in this paper, the change
of the optimal values can be pre-calculated as a metric to guide
online decision makings, without solving the second optimiza-
tion problem as long the solution and covariance of the first
optimization problem are available. The result can be extended
to linear least distance optimization problems, and nonlinear
least distance optimization with (nonlinear) equality constraints
through linearizations. This derivation in this paper provides
a theoretically sound explanation to the empirical observations
shown in [1]. As an additional contribution, we propose another
optimization problem, i.e. aligning two trajectories at given
poses, to further demonstrate how to use the metric. The
accuracy of the metric is validated with numerical examples,
which is quite satisfactory in general (see the experiments in [1]
as well), unless in some extremely adverse scenarios. Last but
not least, calculating the optimal value by the proposed metric
is at least one magnitude faster than solving the corresponding
optimization problems directly.

I. INTRODUCTION

Many robotic applications rely on metrics to make deci-
sions. A metric is usually formed as a pre-calculated scalar
which captures certain aspects of the underlying problem, for
example the entropy in the information theory, or the cost in
an optimization problem.

The most widely used metrics in robotics, at least in
estimation tasks, are attributed to the information theoretic
metrics [2]. This is a broad class, and we mention several of
them for completeness: (1) Fisher Information Matrix (FIM).
If the processing noise is Gaussian, the metric always boils
down to the evaluation of a proper covariance matrix with
respect to its eigen value, trace or determinant [3][4]. (2) Mu-
tual Information. This metric is quite popular which has been
extensively used in robotics, for example, the active con-
trol/planning strategy [5][6][7][8][9], graph pruning [10][11],
online sparse pose-graph construction [12][13], path planning
on a pose graph [14] and so forth. (3) Kullback-Leibler
Divergence (KL Divergence). While the first two metrics deal
merely with uncertainty, KL divergence can incorporate the
mean and covariance of two Gaussian distributions together.
This is quite similar to the optimal value in the optimization
context that we will discuss later, but they are obviously in
different tracks. See [15] for an example of graph pruning
using KL divergence.

Fang Bai is with Center for Autonomous Systems, University of Technol-
ogy Sydney (UTS-CAS), Sydney, Australia. Email: fang.bai@yahoo.com,
fang.bai@student.uts.edu.au

Besides the information theoretic metrics, in the context
of optimization, the optimal value is essentially a metric as
well. However, the optimal value was considered dilatory
in the past, because the optimal value can only be obtained
after solving the underlying problem. This is meaningless
because in most applications, we often encounter a bundle
of candidate problems and a metric is required to tell us
which problem is worth solving. Obviously, if solving the
problem is compulsory, the optimal value is unsuitable for
tasks of this kind. As a result, the optimal value is basically
used for evaluating the optimality of the solution [16][17].
Some authors managed to use the optimal value [18][19]
to detect outliers by using an “optimize-revoke” strategy.
However, this strategy is quite expensive as many undesirable
subproblems are formed and solved in the process.

Recently, for an incremental optimization problem, Bai
et al. [1] empirically show that the optimal value can be
approximated prior to solving the problem. In [1], we pro-
vided an equation for the optimal value, but were unable to
prove it exactly. Later in [20], the authors studied incremental
least squares optimization, and proved that the optimal value
can be pre-calculated exactly for the linear case. The theory
extends to nonlinear cases through linearization. However,
there is still no clear explanation for the result on the equality
constrained optimization in [1].

In this paper, we study the least norm optimization, which
is the counterpart of least squares. Analogous to [20], we
first derive the result for the linear case which is exact, and
then extend it to more general problems like least distance
optimization and nonlinear scenarios. The analysis in this
paper eventually provides a theoretical sound explanation for
the empirical observation in [1]. Moreover, the theoretical
result in this paper is actually quite general, which can be
applied to other similar problems easily.

Overall, this paper includes the following contributions:

1) The change of optimal values in minimum norm opti-
mization (Section II), and its extension to linear least
distance optimization (Section III).

2) An extension to equality constrained nonlinear least
distance optimization on manifold (Section IV), which
explains why the change of optimal values can be pre-
calculated as empirically shown in the paper [1].

3) An example on the cost of aligning trajectories to
illustrate the usage of the metric (Section V-B), with
numerical experiments in Section VI.

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 8295

II. RESULTS ON LEAST NORM OPTIMIZATION

A. Problem Statement and Standard Form

Let us consider a minimum norm optimization problem

min xT x s.t. Ax = b (1)

where the constraints are classified into two parts:

A =

[
A1
A2

]
, b =

[
b1
b2

]
.

This is particularly the case for temporally incremental
optimization problems. The constraint A1x = b1 represents
those that are already available at a specific time point, while
the constraint A2x = b2 can only be obtained after that time
point. Let us assume both A1 and A2 have full row rank.

The optimization problem established using the previously
available measurement explicitly writes

min xT x s.t. A1x = b1. (2)

Now at some point, we have solved the problem (2), but not
yet problem (1). The question is that: Can we tell something
useful about problem (1) from the results of problem (2)?

In this section, we establish the equation on how to
calculate the optimal value (of the objective function) of
problem (1), without solving it directly.

B. Classical Results on Minimum Norm Optimization

To proceed, let us recall some classical results of minimum
norm optimization, taking problem (1) as an example.

The optimal solution xopt is

xopt = A†b = AT (AAT)−1b.

The covariance (with Gaussian assumption) of the optimal
solution, Cov(xopt), is the projection matrix to the Null space
of A, which writes

Cov(xopt) = P(N(A)) = I−AT (AAT)−1A.

The cost at the optimal solution, termed the optimal value
(of the objective function), i.e. xT

optxopt , writes

fopt = bT (AAT)−1b.

We will use the Schur complement [21] to decompose the
below block matrix[

U P
Q V

]
=

[
I O

QU−1 I

][
U O
O V−QU−1P

][
I U−1P
O I

]
.

(3)
Eq. (3) stands as long as A is invertible.

C. Derivation of the Main Result

The derivation consists of a manipulation of matrices via
linear algebra laws. Basically, we will expand the optimal
value of problem (1), i.e., bT (AAT)−1b, and examine its
components.

The two matrices below are useful to express the Schur
complement of AAT . Let us define two invertible matrices:

W = A2Cov(x?1)A
T
2 = A2[I−AT

1 (A1AT
1)
−1A1]AT

2 (4)

H =

[
I O

A2AT
1 (A1AT

1)
−1 I

]
=

[
I O

A2A†
1 I

]
. (5)

Let us apply Schur complement (3) to the matrix AAT .
The result writes

AAT =

[
A1AT

1 A1AT
2

A2AT
1 A2AT

2

]
=H

[
A1AT

1 O
O A2AT

2 −A2AT
1 (A1AT

1)
−1A1AT

2

]
HT

=H
[

A1AT
1 O

O W

]
HT .

Noting that H−1b can be written as

H−1b =

[
I O

−A2A†
1 I

][
b1
b2

]
=

[
b1

−A2A†
1b1 +b2

]
,

then we can finally expand bT (AAT)−1b by a straightfor-
ward matrix calculation as follow

f ?? = bT (AAT)−1b

=bT H−T
[

A1AT
1 O

O W

]−1

H−1b

=(H−1b)T
[
(A1AT

1)
−1 O

O W−1

]
H−1b

=

[
b1

−A2A†
1b1 +b2

]T [
(A1AT

1)
−1 O

O W−1

][
b1

−A2A†
1b1 +b2

]
=bT

1 (A1AT
1)
−1b1 +(A2A†

1b1−b2)
T W−1(A2A†

1b1−b2)

= f ?+(A2x?1−b2)
T [A2Cov(x?1)A

T
2]
−1(A2x?1−b2)︸ ︷︷ ︸

∆ f

.

Conclusion: Therefore the change of optimal values,
∆ f = f ?? − f ?, from problem (1) to problem (2) can be
compactly written as

∆ f = (A2x?1−b2)
T [A2Cov(x?1)A

T
2]
−1(A2x?1−b2). (6)

In (6), the unknown piece of information, x?1 and Cov(x?1),
can be obtained by solving the problem (2). In other words,
given x?1 and its covariance Cov(x?1), we can calculate ∆ f
through Eq. (6), then we calculate the the optimal value of
problem (1) simply by f ?? = f ?+∆ f , without solving it!

III. EXTENSION TO LEAST DISTANCE OPTIMIZATION

In this section, we consider the problem of a least distance
optimization, whose standard form writes

min (Hx−h)T
Σ
−1(Hx−h) s.t. Ax = b. (7)

In (7), we assume H, Σ to be invertible. In this case, by
letting y = Σ

− 1
2 (Hx−h), i.e. x = H−1Σ

1
2 y+H−1h, (7) can

be converted to a least norm optimization

min yT y s.t. AH−1
Σ

1
2 y = b−AH−1h. (8)

Therefore we can extend the conclusion on the least norm
optimization to (7).

8296

As before, we assume A and b are obtained in two
different phases comprising

A =

[
A1
A2

]
, b =

[
b1
b2

]
with A1, A2 of full row rank. Let us write the optimization
problem using the measurement from the first phase only as

min (Hx−h)T
Σ
−1(Hx−h) s.t. A1x = b1. (9)

Formally, we would like to calculate the change of optimal
values from the problem (9) to the problem (7).

Let us write (9) in the form of a least norm optimization

min yT y s.t. A1H−1
Σ

1
2 y = b1−AH−1h (10)

and denote its optimal solution as y?1. The covariance of y?1
is related with that of x?1 = H−1Σ

1
2 y?1 +H−1h by the linear

transformation of Gaussian distribution

A2H−1
Σ

1
2 Cov(y?1)Σ

1
2 H−T AT

2 = A2Cov(x?1)A
T
2 , (11)

and considering y?1 = Σ
− 1

2 (Hx?1−h1) we have

A2H−1
Σ

1
2 y?1− (b2−A2H−1h2) = A2x?1−b2. (12)

Inserting (11) and (12) into the result of minimum norm
optimization, we immediately conclude that the change of
optimal values writes

∆ f = (A2x?1−b2)
T [A2Cov(x?1)A

T
2]
−1(A2x?1−b2). (13)

At last, we can write down a formula of Cov(x?1) by
considering together

Cov(y?1) = I−Σ
1
2 H−T AT

1 (A1H−1
ΣH−T AT

1)
−1A1H−1

Σ
1
2

Cov(x?1) = H−1
Σ

1
2 Cov(y?1)Σ

1
2 H−T

to reach its explicit form

Cov(x?1) = Q−QAT
1 (A1QAT

1)
−1A1Q (14)

where Q = H−1ΣH−T .
To conclude, if we have known x?1 and Cov(x?1) by

solving the problem (9), then we can predict the change of
optimal values between (9) and (7) by (13) easily. In the
linear case, the result is exact. For nonlinear cases, a linear
approximation may apply around its current working point.

IV. EXTENSION TO NONLINEAR CASES WITH AN
EXAMPLE ON MANIFOLD

A nonlinear least distance optimization with equality con-
straints can be generalized as

min Dist(x, x̃) s.t. C(x) = 0

with x̃ being the measurement data having the same dimen-
sion as x, and Dist(x, x̃) being a scalar metric.

Usually, there are many ways to define a distance function
Dist(x, x̃). Here we specifically focus on the Mahalanobis
distance, which extends well to the Frobenius norm and `2

norm based distance. Explicitly, the problem we will discuss
takes the form of

min ‖Diff(x, x̃)‖2
Σ s.t. C(x) = 0 (15)

where Diff(x, x̃) is a vectorized difference between x and
x̃. Σ models our confidence on Diff(x, x̃) which is usually
interpreted as the covariance of some Gaussian distribution.

A standard extension is to linearize (15) to the form of (7),
and then apply the result in linear cases, as the paradigm
found in Extended Kalman Filter (EKF) techniques. In
essence, the objective function in the linearized problem is
an approximation to that of its original nonlinear scenario,
which means the result is not exact any more. We mention
EKF as an example because (13) works incrementally, which
shows some similarities to the Kalman Filter (KF). For an
incremental optimization problem, the linearization point will
not change dramatically. Therefore it is reasonable to assume
that the linearized Jacobian provides a valid approximation
to the original nonlinear problem.

In what follows, we illustrate the idea of using lineariza-
tion with an example on manifold.

Let x and x̃ be two elements on the same manifold. We
use � to describe their difference in the tangent space,
i.e. Diff(x, x̃) = x� x̃. At a certain time point, we have an
optimization problem, say Phase I:

min ‖x� x̃‖2
Σ

s.t. C1(x) = 0
(Phase I)

Let x?1 and Cov(x?1) be the solution and covariance of the
optimization problem in Phase I. Now if we obtain another
constraint C2(x) = 0, which constitutes another optimization
problem named Phase II:

min ‖x� x̃‖2
Σ

s.t. C1(x) = 0
C2(x) = 0

(Phase II)

Then the change of optimal values from Phase I to Phase
II can be approximated by

∆ f = C2(x?1)
T [A2Cov(x?1)A

T
2]
−1C2(x?1) (16)

with A2 given by

A2 =−
∂C2(x?1 �ξ)

∂ξ
|ξ=0.

The notation � is used to apply a perturbation ξ in the
tangent space of x?1, and return an element on manifold.
The covariance Cov(x?1) is given in the tangent space of the
solution x?1. It is calculated by by Eq. (14), by letting

A1 =−
∂C1(x?1 �ξ)

∂ξ
|ξ=0

H =−∂ ((x?1 �ξ)� x̃)
∂ξ

|ξ=0.

The derivation of Eq. (16) is quite straightforward via
linearization. Let

h = x?1 � x̃, b1 = C1(x?1), b2 = C2(x?1).

8297

At x?1, let us linearize the problem Phase I by a perturbation
ξ . The linearized problem writes

min (Hξ −h)T
Σ
−1(Hξ −h) s.t. A1ξ = b1. (17)

Since x?1 is optimal for Phase I, the solution of the above
linearized problem is ξ ?

1 = 0. Now if we linearize the
constraint C2(x) = 0 to A2ξ = b2 at x?1 and add it in (17),
then by the result in the linear case, i.e. (13),

∆ f =(A2ξ
?
1−b2)

T [A2Cov(ξ ?
1)A

T
2]
−1(A2ξ

?
1−b2)

=bT
2 [A2Cov(ξ ?

1)A
T
2]
−1b2

=C2(x?1)
T [A2Cov(x?1)A

T
2]
−1C2(x?1)2

which completes the proof.
Remark 1: Eq. (16) firstly appeared in the paper [1] (Eq.

(15) in that paper). Unfortunately at the time, the mechanism
behind the equation was not completely clear. So the analysis
here also fills the gap in [1].

V. APPLICATIONS

A. Outlier Detection in Constrained Pose Graph Formula-
tion

The constrained pose graph formulation was firstly pro-
posed in [1], while the original idea on the feature based
SLAM was published in [22]. In [1], the change of optimal
values was used as a metric [1] to detect outliers in an
incremental scheme. Although the mechanism was not clear
in that paper, the experiments provided in [1] demonstrated
the effectiveness of the change of optimal values as a metric
to improve the robustness of the framework. As an additional
material, for the conventional least squares based pose graph
formulation, the outlier detection based on the change of
optimal values was published in [20].

B. Cost of Aligning Two Trajectories

A trajectory is, in its explicit form, a collection of poses.
Let T be a trajectory, then it can be described by T =∪Ti,
Ti ∈ SE(d), d = 2,3. However, in many applications, if one
pose is moved, we want the impact to be passed to other
poses as well. Therefore, it is more desirable to exploit an
alternative parameterization based on relative transformations
(termed relative poses in robotics). Without loss of generality,
let us define a trajectory as a head pose, plus a chain of
relative poses following the head pose. Let TA and TB be
two trajectories given by

TA
def
= {AT1}∪{ATi,i+1}i=1,2,···NA

TB
def
= {BT1}∪{BT j, j+1} j=1,2,···NB

where AT1 is the head pose of trajectory TA and
{ATi,i+1}i=1,2,···NA is a set of relative poses following the
head pose AT1. The same rule applies to trajectory TB. In this
parameterization, we obtain any arbitrary pose by chaining
out the relative poses. For example, in the trajectory TA, an
arbitrary pose ATk can be written as

ATk =
AT1

AT1,2 · · ·ATk−1,k.

Now at some point, we know that the l-th pose ATl in the
trajectory TA and the r-th pose BTr in the trajectory TB are
the same pose, which results to a hard constraint ATl =

BTr
and an optimization problem in the form of

min ‖AT1 �
AT̃1‖2

AΣ1
+

NA

∑
i=1
‖ATi,i+1 �

AT̃i,i+1‖2
AΣi,i+1︸ ︷︷ ︸

Cost of trajectory TA

+‖BT1 �
BT̃1‖2

BΣ1
+

NB

∑
j=1
‖BT j, j+1 �

BT̃ j, j+1‖2
BΣ j, j+1︸ ︷︷ ︸

Cost of trajectory TB

s.t. ATl =
BTr

with ATl =
AT1

AT1,2 · · ·ATl−1,l
BTr =

BT1
BT1,2 · · ·BTr−1,r

.

(18)
where we use the notations AT̃1, BT̃1, AT̃i,i+1, BT̃i,i+1 to
describe the initial configuration of TA and TB without the
hard constraint ATl =

BTr, while AT1, BT1, ATi,i+1, BTi,i+1
are state variables to be estimated by imposing the hard
constraint ATl =

BTr.
Remark 2: The problem described in (18) is essentially

an extension to the problem “trajectory bending” studied by
Dubbelman et al. [23][24]. Please refer to [23][24] for a
reference of its application backgrounds. Here in (18), we
define the “bending” as a more general constraint by aligning
any arbitrary two poses together; while the original paper was
to “bend” a pose in a trajectory to a specific given value.
However mathematically, I think this difference is marginal
and one should extend to another easily. Nevertheless, it
is worth noticing how seemingly different problems are
essentially a description of kind of the same thing.

Problem: Due to process noise, there might exist many
potential candidate pairs for ATl and BTr. The question is:
What is the cost for each specific pair? A brutal force answer
is to solve the optimization problem in (18) for each pair.
However, alternatively we can use the theory described in
this paper to predict the change of optimal values directly.

In (18), let us choose � as the logarithm mapping of
SE(3) in the vector space. To apply the result in Section IV,
we further define � by the exponential mapping of SE(3).
Formally these two binary operators are defined as

� : T1 �T2 = Log(T−1
1 T2), T1,T2 ∈ SE(3)

� : T�ξ = T ·Exp(ξ), T ∈ SE(3),ξ ∈ R6.

The constraint ATl =
BTr can be written in the standard form

ATl =
BTr⇐⇒ Log(ATl

BT−1
r) = 0.

Let us denote C2(x) = Log(ATl
BT−1

r). Now we are at the
stage to apply the result in Section IV directly.

Previous solution and its covariance: Without the con-
straint ATl =

BTr, the optimal trajectory for TA and TB are
simply their original forms

TA : AT?
1 =

AT̃1,
AT?

i,i+1 =
AT̃i,i+1 (i = 1,2, · · ·NA)

8298

5 10 15
X coordinate [m]

-8

-6

-4

-2

0

2

4

Y
 c

oo
rd

in
at

e
[m

]

Initial Trajectories

5 10 15
X coordinate [m]

-8

-6

-4

-2

0

2

4

Y
 c

oo
rd

in
at

e
[m

]

Trajectories by aligning pose 4 and pose 5

Predicted Cost: 623.2
Real Cost: 623.5

5 10 15
X coordinate [m]

-8

-6

-4

-2

0

2

4

Y
 c

oo
rd

in
at

e
[m

]

Trajectories by aligning pose 10 and pose 10

Predicted Cost: 0.4192
Real Cost: 0.4191

5 10 15 20
X coordinate [m]

-8

-6

-4

-2

0

2

4

6

Y
 c

oo
rd

in
at

e
[m

]

Trajectories by aligning pose 7 and pose 15

Predicted Cost: 425.2
Real Cost: 442.1

0 5 10 15 20
X coordinate [m]

-8

-6

-4

-2

0

2

4

6

Y
 c

oo
rd

in
at

e
[m

]

Trajectories by aligning pose 18 and pose 3

Predicted Cost: 1174
Real Cost: 1211

0 5 10 15
X coordinate [m]

-8

-6

-4

-2

0

2

4

6

Y
 c

oo
rd

in
at

e
[m

]

Trajectories by aligning pose 1 and pose 20

Predicted Cost: 1768
Real Cost: 1798

Fig. 1. Examples of aligning two trajectories, plotted in red and blue respectively. For each aligned case, we show the resulting trajectory and the cost it
takes. Both the predicted cost (by the OFC metric) and the real cost (by fully optimizing the problem) are reported for comparison.

TB : BT?
1 =

BT̃1,
BT?

j, j+1 =
BT̃ j, j+1 (j = 1,2, · · ·NB).

Let us collect the above result in the variable x?1. To calculate
its covariance Cov(x?1), we linearize the cost function at x?1.
By some trivial linear algebra on Lie group, we get

Cov(x?1) = H−1
ΣH−T (by (14))

with H= I , and Σ constructed diagonally with corresponding
AΣi, AΣi,i+1, BΣi, BΣ j, j+1. The optimal value f ? = 0.

New Constraint: For the constraint, let us index the i-th
component of a trajectory, for example the trajectory TA as
TA[i], which basically means TA[1] = AT1, TA[2] = AT1,2,
TA[3] = AT2,3 and so forth. Let us further denote

C2(x?1) = Log(AT̃l
BT̃−1

r) = η .

The linearization of C2(x1) at x?1 consists of trivial linear
algebras based on the BCH formula and the adjoint operation
of SE(3) [25][26]. We provide the analytical Jacobian here
and ignore the calculation details for simplicity:

A2(TA[i]) =−Jl(η)−1Ad(AT?
i), (i = 1,2, · · · l)

A2(TB[j]) = Jl(η)−1Ad(AT̃l
BT̃−1

r
BT?

r− j+1)), (j = 1,2, · · ·r)

with Jl(·), and Ad(·) being the left-hand Jacobian and the
adjoint operation of SE(3) respectively.

Apply Eq. (16): Finally, the change of optimal values ∆ f
can be calculated by Eq. (16), and the optimal value of the
problem (18) can be approximated by f ?? ≈ f ?+∆ f = ∆ f .
Note that for this specific example, we do not need to
solve any optimization problem. The only requirement is to
linearize the constraints, and then apply (16)!

VI. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments for the
trajectory alignment problem defined in (18). We use Matlab
to simulate two random robot trajectories, by firstly rotating
the robot by a random angle, and then moving the robot 1m
forward. These two trajectories are intersected in the middle
in case they are completely apart from one other. Afterwards,
we add Gaussian additive noise with standard deviation 0.1m
on the translational part, and 0.01rads on the rotational part.
We use an Intel i5-5300U CPU @ 2.30GHz× 4, with Ubuntu
16.04 LTS distribution to run all the experiments.

A. An Intuitive Example: Trajectory Change, Predicted Cost
and Real Cost

First, let us consider a simple example where each trajec-
tory contains 20 poses. We choose several pose combinations
to demonstrate the idea as shown in Fig. 1. We visualize the
change of the trajectory with respect to the cost predicted by
the metric, as well as the real cost obtained by completely
solving the problem (18). From Fig. 1, we would say that
the metric is quite robust in general; even for the cases of
misalignments, like pose 1 and 20, the resulting trajectories
are completely twisted, while the metric is still pretty accu-
rate. Note that the initial noise free trajectories are perfectly
aligned at the 10-th poses, where the problem attains the
lowest cost (with noise) and the metric is particularly precise.

Then we calculate the cost for all possible pose combina-
tions, which is 20×20, and report the corresponding relative
error in Fig 2. It can be envisioned that there exists many
unrealistic alignments within these 20× 20 combinations,
however the relative error is essentially very low, with a

8299

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Trajectory A

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

T
ra

je
ct

or
y

B
Relative Error of All Pose Combinations

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fig. 2. The relative error of the predicted cost in each pose combination.

TABLE I
THE COMPUTATIONAL TIME (UNIT: SECONDS)

Num. of Poses 20 50 100 200
By metric overall 2.49116 36.7919 294.033 2457.14
By solving overall 22.5889 460.228 4799.49 42428.2

By metric avg. 0.00623 0.0147 0.0294 0.0614
By solving avg. 0.0565 0.184 0.480 1.06

maximum around 10%, which is sufficient for any further
decision makings. At last, with the Matlab code, it takes
only 3 seconds to compute the metric for all the 20× 20
cases, while the corresponding time consumed by solving
the problem is 26 seconds.

B. Computational Time and Relative Error with Different
Trajectory Lengths

To quantify the effect of trajectory lengths on the accuracy
of the metric, we simulate several trajectories with 20, 50,
100 and 200 poses respectively. As before, we compute the
alignment for all possible pose combinations for each case.
The relative error between the predicted cost (by the metric)
and the real cost (by solving the problem) is reported in
Fig. 3. It can be seen from Fig. 3 that for most of the
cases, the relative error is still reasonable. However as the
length of the trajectory grows, the “unrealistic alignments”
(i.e. misalignments) can lead to a substantially amount of
outliers in the boxplot. An explanation to this phenomenon
is that because the metric is essentially built on the result
of linear cases, if the alignment is too far, the linearization
point changes dramatically and the linear result is less
accurate. However, in general, the predicted cost still provide
a reasonable approximation to the real cost.

The computational time is reported in Table I. For each
case, we show the overall computational time for all possible
pose combinations, as well as the averaged time for obtaining
a cost for a single pose combination. Overall, calculating the
cost by the metric is at least one magnitude faster than by
solving the problem directly. This timing saved here can be
extremely beneficially for large problem instances.

20 50 100 200
Num. of Poses

-100%

0%

100%

200%

300%

400%

500%

R
el

at
iv

e
E

rr
or

Fig. 3. The relative error of the metric with respect to different lengths
of trajectories. Note here we compute all possible pose combinations, for
example the number of possible alignments for 200 poses are 40000. This
may of course include some ridiculous combinations, which attributes to
the outliers (marked in red) in the plot.

VII. DISCUSSION AND CONCLUSION

In incremental scenarios, it is also possible to compute
an approximate solution to the second subproblem (i.e.,
Eq. (1) (7)), exploiting special structure and sparse linear
algebraic techniques [27][28][29][30][31]. While this idea
works and is a general practice, the main insight of this
paper over previous publications is that: It is actually possible
to derive an analytical equation (in closed form) which
quantifies the change of optimal values directly. Besides, the
proposed method is more advantageous in face of many new
measurement candidates, which can share x?1 and Cov(x?1).

In the proposed equations, the computational bottleneck
of ∆ f lies in the calculation of Cov(x?1), which can be
mitigated by computing a marginal covariance [32][20],
i.e., only computing A2Cov(x?1)A

T
2 explicitly. It is also of

great interests to further compare the numerical procedure
to calculate an updated solution to the second subproblem,
with that to calculate A2Cov(x?1)A

T
2 . Further research in this

direction will help understanding the connection between
updating the solution and updating the optimal value.

In nonlinear cases, the equation is derived by linear ap-
proximation. The numerical experiment shows good accuracy
in general, but still there are many failure cases as shown in
Fig. 3. One explanation is to use the change of linearization
points. However, Fig. 1 shows that the approximated ∆ f
is actually quite tolerant to linearization changes (see the
twisted trajectories). Therefore it is reasonable to assume
that there exists a more sophisticated mechanism that has
not been well-understood yet. A theoretical investigation on
the accuracy bound of ∆ f is still required.

To conclude, this paper provides the closed form of
the change of optimal values in the incremental minimum
norm optimization and least distance optimization in the
linear case. The change of optimal values in nonlinear cases
are approximated via linearization. These results yield the
possibility of using the change of optimal values as a pre-
calculated metric, in incremental (or online) applications.

8300

REFERENCES

[1] F. Bai, T. Vidal-Calleja, and S. Huang, “Robust incremental SLAM
under constrained optimization formulation,” IEEE Robotics and Au-
tomation Letters, vol. 3, no. 2, pp. 1207–1214, 2018.

[2] D. J. MacKay, Information theory, inference and learning algorithms.
Cambridge university press, 2003.

[3] H. Carrillo, I. Reid, and J. A. Castellanos, “On the comparison of
uncertainty criteria for active slam,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp.
2080–2087.

[4] K. Khosoussi, M. Giamou, G. S. Sukhatme, S. Huang, G. Dissanayake,
and J. P. How, “Reliable graph topologies for SLAM,” International
Journal of Robotics Research, 2018.

[5] P. Whaite and F. P. Ferrie, “Autonomous exploration: Driven by
uncertainty,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 3, pp. 193–205, 1997.

[6] H. J. S. Feder, J. J. Leonard, and C. M. Smith, “Adaptive mobile
robot navigation and mapping,” The International Journal of Robotics
Research, vol. 18, no. 7, pp. 650–668, 1999.

[7] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and
H. F. Durrant-Whyte, “Information based adaptive robotic explo-
ration,” in IEEE/RSJ international conference on intelligent robots and
systems, vol. 1. IEEE, 2002, pp. 540–545.

[8] A. J. Davison, “Active search for real-time vision,” in Computer Vision,
2005. ICCV 2005. Tenth IEEE International Conference on, vol. 1.
IEEE, 2005, pp. 66–73.

[9] T. A. Vidal-Calleja, A. Sanfeliu, and J. Andrade-Cetto, “Action se-
lection for single-camera slam,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 40, no. 6, pp. 1567–1581,
2010.

[10] H. Kretzschmar and C. Stachniss, “Information-theoretic compression
of pose graphs for laser-based slam,” The International Journal of
Robotics Research, vol. 31, no. 11, pp. 1219–1230, 2012.

[11] N. Carlevaris-Bianco, M. Kaess, and R. M. Eustice, “Generic node re-
moval for factor-graph slam,” IEEE Transactions on Robotics, vol. 30,
no. 6, pp. 1371–1385, 2014.

[12] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact
pose slam,” IEEE Transactions on Robotics, vol. 26, no. 1, pp. 78–93,
2010.

[13] H. Johannsson, M. Kaess, M. Fallon, and J. J. Leonard, “Temporally
scalable visual slam using a reduced pose graph,” in Robotics and
Automation (ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 54–61.

[14] R. Valencia, M. Morta, J. Andrade-Cetto, and J. M. Porta, “Planning
reliable paths with pose slam,” IEEE Transactions on Robotics, vol. 29,
no. 4, pp. 1050–1059, 2013.

[15] Y. Wang, R. Xiong, Q. Li, and S. Huang, “Kullback-leibler divergence
based graph pruning in robotic feature mapping,” in 2013 European
Conference on Mobile Robots. IEEE, 2013, pp. 32–37.

[16] E. Olson and M. Kaess, “Evaluating the performance of map optimiza-
tion algorithms,” in RSS Workshop on Good Experimental Methodol-
ogy in Robotics, vol. 15, 2009.

[17] G. Hu, S. Huang, and G. Dissanayake, “Evaluation of pose only
slam,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 3732–3737.

[18] Y. Latif, C. Cadena, and J. Neira, “Robust loop closing over time for
pose graph SLAM,” The International Journal of Robotics Research,
vol. 32, no. 14, pp. 1611–1626, 2013.

[19] M. C. Graham, J. P. How, and D. E. Gustafson, “Robust incremental
slam with consistency-checking,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015,
pp. 117–124.

[20] F. Bai, T. Vidal-Calleja, S. Huang, and R. Xiong, “Predicting objec-
tive function change in pose-graph optimization,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 145–152.

[21] C. D. Meyer, Matrix analysis and applied linear algebra. Siam, 2000,
vol. 71.

[22] F. Bai, S. Huang, T. Vidal-Calleja, and Q. Zhang, “Incremental
SQP method for constrained optimization formulation in SLAM,”
in Control, Automation, Robotics and Vision (ICARCV), 2016 14th
International Conference on. IEEE, 2016, pp. 1–6.

[23] G. Dubbelman, I. Esteban, and K. Schutte, “Efficient trajectory
bending with applications to loop closure,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE,
2010, pp. 4836–4842.

[24] G. Dubbelman and B. Browning, “COP-SLAM: closed-form online
pose-chain optimization for visual SLAM,” IEEE Transactions on
Robotics, vol. 31, no. 5, pp. 1194–1213, 2015.

[25] G. S. Chirikjian, Stochastic Models, Information Theory, and Lie
Groups, Volume 2: Analytic Methods and Modern Applications.
Springer Science & Business Media, 2011, vol. 2.

[26] T. D. Barfoot, State Estimation for Robotics. Cambridge University
Press, 2017.

[27] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, “Methods for
modifying matrix factorizations,” Mathematics of computation, vol. 28,
no. 126, pp. 505–535, 1974.

[28] A. Cassioli, A. Chiavaioli, C. Manes, and M. Sciandrone, “An incre-
mental least squares algorithm for large scale linear classification,”
European journal of operational research, vol. 224, no. 3, pp. 560–
565, 2013.

[29] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, 2008.

[30] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using the
Bayes tree,” The International Journal of Robotics Research, vol. 31,
no. 2, pp. 216–235, 2012.

[31] L. Polok, V. Ila, M. Solony, P. Smrz, and P. Zemcik, “Incremental
block cholesky factorization for nonlinear least squares in robotics.”
in Robotics: Science and Systems, 2013, pp. 328–336.

[32] V. Ila, L. Polok, M. Solony, P. Smrz, and P. Zemcik, “Fast covariance
recovery in incremental nonlinear least square solvers,” in Robotics
and Automation (ICRA), 2015 IEEE International Conference on.
IEEE, 2015, pp. 4636–4643.

8301

