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Abstract— Magnetic tracking algorithms can be used to 

determine the position and orientation of magnetic markers or 

devices. These techniques are particularly interesting for 

biomedical applications such as teleoperated surgical robots or 

the control of upper limb prostheses. The performance of 

different algorithms used for magnetic tracking was compared 

in the past. However, in most cases, those algorithms were 

required to track a single magnet. 

Here we investigated the performance of three localization 

algorithms in tracking up to 9 magnets: two optimization-based 

(Levenberg-Marquardt algorithm, LMA, and Trust Region 

Reflective algorithm, TRRA) and one recursion-based 

(Unscented Kalman Filter, UKF). The tracking accuracy of the 

algorithms and their computation time were investigated 

through simulations. 

The accuracy of the three algorithms, when tracking up to 

six magnets, was similar, leading to estimation errors varying 

from 0.06 ± 0.02 mm to 2.26 ± 0.07 mm within a  100 mm × 54 

mm × 100 mm workspace, at the highest sampling frequency. 

In all cases, computation times under 300 ms for the UKF and 

45 ms for the LMA/TRRA were obtained. The TRRA showed 

the best tracking performance overall. 

These outcomes are of interest for a wide range of robotics 

applications that require remote tracking. 

I. INTRODUCTION 

Magnetic tracking deals with the determination of the 
position and/or orientation of a specially designed magnetic 
marker or device by means of its interaction with static or 
low-frequency magnetic fields (MF) [1]. As the human body 
is transparent to low-frequency MFs, this technique is 
particularly interesting for biomedical applications. These 
include tracking of body [2] and bone movements [3], of 
surgical needles [4] and more complex instruments like 
bronchoscopes [5], colonoscopes and robotic capsules for 
endoscopy [6].  

Monitoring the position of a magnetic marker is also 
useful if the marker (or what it is attached to) must be 
teleoperated. Indeed, although open-loop control strategies 
exist [7], magnetic tracking allows to implement more 
efficient closed-loop control strategies to wirelessly control 
fully untethered micro-robots [8] or to perform robotic 
surgeries [9].  

In the framework of biomedical applications, we recently 
proposed to track the movement of multiple magnetic 
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markers (MM), in the form of permanent magnets, to control 
a dexterous hand prosthesis [10]. Indeed, MMs could be 
implanted in the residual muscles of an amputee to provide 
information on their contraction state. By concurrently 
monitoring the position of several magnets, these signals 
could potentially be used to simultaneously and 
proportionally control multiple DoFs of a hand prosthesis. 
We called this the myokinetic control interface [10]. 

In systems like the one described above, the pose (i.e. 
position and orientation) of passive MMs is usually retrieved 
by measuring the MF they generate with remote sensors 
[11],[12]. The problem of reconstructing the pose of a MM 
(or, more generally, a magnetic source) from such 
measurements is called the inverse problem of 
magnetostatics. From a theoretical standpoint, the solution of 
this problem entails the inversion of a model that describes 
the MF generated by the sources in the workspace. Several 
investigators tried to optimize the performance of these 
systems by developing (i) models that more accurately 
describe the MF [13],[14] or (ii) algorithms able to efficiently 
solve the problem (by inverting or numerically solving the 
particular model used) [15]-[18]. The latter are the primary 
focus of this work 

Algorithms following different approaches were proposed 
so far. These span from analytical solutions [15] to neural 
networks [16], from optimization-based [17] to recursion-
based methods [18],[19]. The reason for these efforts is that 
an analytical solution of the inverse problem is only available 
for the particular case where a single magnet is tracked [15], 
and thus numerical approximations are needed. In the process 
of finding the best candidate for magnetic tracking, the 
performance of different algorithms was compared in terms 
of computation time, localization accuracy and sensitivity to 
the quality of the initial conditions. Specifically, Hu and 
colleagues [20] compared the performance of five non-linear 
optimization algorithms (i.e. Powell’s, Downhill Simplex, 
DIRECT, Multilevel Coordinate Search, and Levenberg-
Marquardt). They found that the Levenberg-Marquardt 
algorithm (LMA) outperformed the other ones in terms of 
computation time, and (together with the Multilevel 
Coordinate Search algorithm) showed the best tracking 
accuracy. In fact, the LMA was exploited by several research 
groups to track one [3],[29] or more [10],[21],[22],[23] 
magnetic sources, using both desktop and embedded 
platforms [24]. On the other hand, the LMA was 
outperformed by a particle swarm optimization method in 
tracking the pose of a parallelepiped magnet [14]. Another 
example is the work from Birsan [25], that developed a 
magnetic tracking system based on an unscented Kalman 
Filter (UKF). He showed that the UKF outperformed the 
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direct inversion of the magnetic dipole model in terms of 
tracking accuracy. 

In most of these examples, the algorithms were required 
to track a single MM. However, we envision magnetic 
tracking systems able to track many more magnets, as these 
would enable a whole new class of applications, from the 
control of multi-articulated prosthetic hands to robot swarms. 
Focusing on the first case, we investigated and compared the 
performance of three viable localization algorithms in 
tracking up to 9 MMs in a workspace resembling the human 
forearm. We tested the Trust-Region Reflective algorithm 
(TRRA) [26], the LMA and the UKF [25]. 

The TRRA is an iterative optimization method for non-
linear least square problems, based on the Gauss-Newton 
algorithm, which searches for a new solution in a “trusted 
region” around the current one. The TRRA implementation 
used in this work allowed to implement solution boundaries. 
The LMA, commonly used in the literature, is similar to the 
TRRA as it finds a solution using the Gauss-Newton 
algorithm. LMA differs from TRRA because it is interpolated 
with the method of gradient descent. Finally, the UKF falls 
under the class of recursive algorithms. These, in addition to 
the most recent observed value (i.e. MF sample), also exploit 
information from previous measurements to improve the 
prediction of the desired variable (i.e. the pose of the MMs). 

Our results showed that the TRRA pose estimation error 
is the lowest, with the LMA following closely. The error in 
tracking up to 6 MMs was under half a millimeter, while 9 
MMs could not be tracked with reasonable accuracy by any 
algorithm. The UKF showed the worst performance, with 
localization errors generally below 2 mm. The latter was also 
the most sensitive to the quality of the initial conditions. 
Finally, the computation time of the UKF was the largest 
(around 300 ms), and at least one order of magnitude larger 
than the LMA. These outcomes are of interest for a wide 
range of robotics applications in which remote tracking is 
necessary, and support the viability of multiple MM tracking 
systems. 

II. MATERIALS AND METHODS 

A.  Mathematical approximation and localization algorithms 

In order to simplify the solution of the localization 
problem (inverse problem of magnetostatics), the point dipole 
model approximation can be exploited. This model 
approximates each MM as a point magnetic dipole located at 
its center. The magnetic field Bi = B(xi), generated at the 
location xi by a collection of n dipoles, located at xj, j = 1, …, 
n, with magnetic moment respectively equal to Mjmj (here Mj 
and mj are the magnitude and direction of the magnetic 
moment of the j-th MM), can be evaluated as: 

𝑩(𝑥𝑖) =  ∑
𝑀𝑗𝜇𝑗𝜇0

4𝜋
(
3(𝒎𝑗𝒙𝑖𝑗)𝒙𝑖𝑗

|𝒙𝑖𝑗|
5 −

𝒎𝑗

|𝒙𝑖𝑗|
3)

𝑛
𝑗=1 , 𝑖 = 1,… , 𝑁     (1) 

Here xij = xi - xj, and xi represents the location of N sites 
(sensors) where the magnetic field is measured. This 
approximation is excellent in the ideal case of infinite 
distance between sensors and sources (far field) while it loses 
accuracy when this distance becomes smaller [27]. 
Nevertheless, it proved sufficiently accurate in several non-
ideal cases [28],[29]. Thus, measuring the compound MF 

generated by the n MMs, using multiple sensors, allows to 
solve (1) in favor of xij, providing the solution to the 
localization problem.  

In this work, we performed several simulations (see 
below) and the resulting measurements of the MF were fed to 
the three numerical approximation methods under evaluation 
(LMA, TRRA and UKF). All these algorithms need as an 
input, in addition to the measurements of the MF, an estimate 
of the pose of all the MMs, to use as an initial guess where to 
start to find a solution. This was set depending on the test 
being carried out (described below).  

Two of the numerical approximation methods tested 
(LMA and UKF) were implemented in C++, and executed on 
a desktop PC (HP ProDesk 490 G3 MT Business PC, Intel 
Core i7-6700 CPU at 3.40 GHz, 16 GB of RAM) running a 
real-time Linux OS (Ubuntu 18.10 with the PREEMPT_RT 
patch, Canonical). Specifically, the LMA implementation 
from the freely available CMinpack library was used [31]. On 
the other hand, the UKF was implemented from scratch 
(APPENDIX), based on the work from Birsan [25]. The 
MATLAB implementation of the TRRA was used. 

B. Simulation setup 

Five systems were simulated using COMSOL 
Multiphysics

®
 (COMSOL Inc., Stockholm, Sweden), in order 

to compare the performance of the three algorithms. Each 
system comprised a different number of MMs (either 1, 2, 4, 
6 or 9) in a fixed workspace mimicking the dimensions of the 
human forearm [30]. The workspace was modeled as a 
parallelepiped of 100 mm × 54 mm × 100 mm (l × w × h), 
with the bottom base centered at the origin of a Cartesian 
coordinate system, and parallel to the XY plane at z = 0 (Fig. 
1, upper inset). The MMs were modeled as Nd-Fe-B grade 
disc magnets (r = h = 2 mm, axial remanent magnetization Br 

= 1.27 T) with their magnetization vector pointing along the 
positive Z direction.  

For each system, the MMs were initially arranged in a 
specific configuration depending on the total number of MMs 
(Fig. 1, middle inset). Then, we simulated the movement of a 
single MM (namely MM2, except in the single-magnet case 
in which MM1 was moved) along a pre-defined linear 
trajectory (along Y). Specifically, MM2 was moved back and 
forth by 10 mm, with 1 mm steps, for two cycles. This 
resulted in a total of 41 data points (Fig. 1, lower inset). 

The magnetic field was sampled at specific sites, 
simulating the presence of magnetic field sensors. The sites 
were laid out on four planar and orthogonal grids of seven 
columns and four rows, for a total of 112 sites. Each column 
and row were separated by 9 mm. The four grids were 
spatially centered at the four sides of the workspace, two on 
the XZ plane, and two on the XY plane (Fig. 1, upper inset). 
In addition, noise was added to all the simulated data (50 
repetitions). The noise was generated from white gaussian 
noise (standard deviation of 2 mG) that was then quantized 
(resolution of 4.35 mG), in order to simulate conditions as 
similar as possible to the ones encountered in a real system. 
This simulated the noise characteristics of a commercial 
magnetometer (HMC5983, Honeywell Inc., Morristown, NJ). 

Two kinds of tests were performed: static and dynamic.  
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Static tests  

In the static case, the different spatial configurations 
generated at each step of MM2 (MM1 in the single-magnet 
case) were considered as separate static localization problems 
to solve. In this case, the initial guess required by all 
algorithms was set as the actual pose of the MMs. The 
algorithms were required to retrieve the position of the MMs 
over the 50 repetitions generated by adding noise to the 
simulated data.  

Dynamic tests  

In the dynamic case, the different positions occupied by 
MM2 (MM1 in the single-magnet case) were considered as 
part of a trajectory having a 1 s period (all other MMs were 
kept still in the initial position). In this case, the pose 
retrieved by the algorithms in the previous iteration was used 
as the initial guess for the current iteration, so to mimic an 
online system. Additionally, different sampling frequencies 
were simulated by using subsets of the available data points. 
These were 20 Hz (all data points), 10 Hz and 2 Hz (five data 
points – Fig. 1, lower inset). This aimed to test the sensitivity 
of the algorithms to the quality of the initial guess. Indeed, by 
decreasing the sampling frequency, the distance between 
subsequent data points grows, as well as the distance between 
the initial guess and the actual position of the MMs. 

 

Algorithms configuration  

The additional information about the movement of the 
MMs, required by the TRRA and UKF algorithms, was set as 
follows. The sigma value of dimension Y (along which MM2 
moved) was set to 0.1, while the other ones were set to 0.001 
(APPENDIX). Correspondingly, for the TRRA boundary 
constraints were set. In particular, each MM was allowed to 
move, in the XZ plane, within a square with a side of 2 cm. 
Along Y, instead, the MMs were allowed to move 2 cm away 
from their starting position. These displacement boundaries 
were set symmetrically along all directions, with respect to 
the MM initial position, and they were equal for all MMs. 
Finally, the Z component of the MMs orientation was 
constrained to remain positive, ensuring a maximum angular 
excursion, from the initial position, of ± 90°.  

C. Performance evaluation 

The performance of the three algorithms was evaluated 
using three metrics: the computation time (CT), the 
localization error, and the robustness to the initial guess. In 
particular, operating system functions in the C++ source code 
were used to measure the CT needed by the algorithm to 
localize the MMs. Unfortunately, the CT of the TRRA 
algorithm could not be calculated, as it was implemented in a 
different platform (i.e. MATLAB). However, since Trust 
Region algorithms and the LMA are both based on the 
Newton Step method [32], they should exhibit similar 
convergence speeds, hence justifying the quantification of the 
CT for only one of the two optimization methods in this 
preliminary assessment. 

The localization error was evaluated both in terms of 
position and orientation accuracy. In the former case, at each 
iteration, the error was defined as the Euclidean distance 
between the real (xreal) and the estimated (xtrack) position:   

𝐸𝑝 = ‖𝑥⃗𝑟𝑒𝑎𝑙 − 𝑥⃗𝑡𝑟𝑎𝑐𝑘‖                              (2) 

The orientation error was defined as the angle θ between 
the direction vectors of the real and estimated magnetic 
moments (considering |m| = 1): 

𝐸𝑜 = 𝜃 = 𝑐𝑜𝑠−1(𝑚⃗⃗⃗𝑟𝑒𝑎𝑙 ∙ 𝑚⃗⃗⃗𝑡𝑟𝑎𝑐𝑘)                   (3) 

Akin to our previous work [23], these errors were split in 
two components (em for the moving MM and ect for the 
others), each with an average value (𝑒̅), plus-minus a 
standard deviation (S). In particular, for each system, the 
errors along the trajectory were computed (conservatively) as 
the 95

th
 percentile of the aggregated data. Additionally, in the 

dynamic test, the algorithms’ performance was analyzed 
independently for each of the two cycles. This was performed 
to allow the UKF to appropriately set its covariance matrix 
(stationary regime). 

Finally, the robustness of the algorithms to the quality of 
the initial guess was quantified by correlating the errors (em 
and ect) with the distance between the initial guess and the 
actual position of the MMs, using the Spearman correlation 
coefficient, rs. 

III. RESULTS 

For the sake of brevity we report only the results related 
to the position accuracy. In fact, the orientation accuracy 

 

Figure 1. Experimental setup: simulated distribution of sensors and 
magnets (MM). Upper inset: distribution of the four groups of sensors 

that surround the workspace and the placement of the MMs (six MMs 

system). Middle inset: distribution of MMs in the five systems. The 
red dot indicates the moving MM, i.e., MM2. Lower inset: trajectory 

followed by the moving MM; different sampling frequencies were 

simulated, which resulted in a different amount of data points.  
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proved always lower than 10° in all systems up to 6 MMs, 
and its trend closely matched that found for the position 
accuracy.  

Overall, the static tests demonstrated comparable 
localization error across the three algorithms (Fig. 2). The 
TRRA exhibited the lowest em and ect, with standard 
deviations similar to those of the LMA. The UKF localization 
typically resulted in the largest errors, albeit the differences 
with respect to the other two algorithms were small (in the 
order of hundreds of microns). All algorithms showed 
considerably larger localization errors in the system with nine 
MMs. Specifically, the minimum em and ect were 0.06 mm, 
obtained when the TRRA was used to localize two magnets. 
The largest em (excluding the nine-magnets system) was 0.50 
mm, while the largest ect was 0.92 mm. Both values were 
obtained when the UKF was used to localize six MMs. Sm 
and Sct were always low, i.e. under 0.04 mm and 0.05 mm for 
the LMA and the TRRA, respectively. The UKF resulted in 
larger standard deviations (up to 0.16 mm). 

For the dynamic tests, the results from a representative 
configuration (4 MMs, 20 Hz and 10 Hz cases) are first 
presented (Fig. 3). The performance of the LMA and TRRA 
was not affected by the change in sampling frequency, with 
em and ect being lower than 0.18 and 0.82 mm, respectively. 
On the other hand, the UKF performance reduced 
significantly, as em and ect increased by a factor of ~2 (i.e. 
from 2.01 mm to 3.92 mm). The TRRA exhibited the lowest 
em and ect at both frequencies, being these equal to 0.12 mm 
and 0.4 mm, respectively. For all algorithms, the relationship 
between the actual and the computed position along Y proved 
highly linear, with R

2
 being always higher than 0.89 

(p<0.001). More generally, the TRRA showed the best pose 
estimation accuracy also in the dynamic tests (Fig. 4). With 

this algorithm, excluding the system with 9 MMs, em was as 
low as 0.06 mm (two MMs system) and always lower than 
0.36 mm. The TRRA and LMA ect was comparable, being 
always lower than 0.81 mm. The UKF pose estimation 
accuracy was the lowest one, leading to values of em and ect 
as large as 33.29 mm and 4.75 mm, respectively (both found 
for the six magnets systems at 2 Hz). In agreement with the 
static case, all algorithms showed considerably larger 
localization errors in the system with nine MMs. 

The LMA and the TRRA proved robust to variations of 
the initial guess, being basically unaffected by a change in the 
sampling frequency (rs < 0.01, p > 0.5 in both cases). On the 
other hand, the accuracy of the UKF in terms of em and ect 
was inversely correlated with the quality of the initial guess 
(rs = 0.36, p = 0.01, Fig. 4). As an example, in the system 
with 4 MMs, em for the UKF increased from 2.01 mm to 
18.54 moving from 20 Hz to 2 Hz. 

As expected, no particular differences were observed 
between the localization errors of the LMA and TRRA 
during the first and the second cycle (Fig. 4). This held true 
also for the UKF, with the exception of the 2 Hz case, for 
which the performance decreased during the second cycle. 
Under these conditions, however, em was considerably large 
during both cycles, ranging from 14.27 ± 0.01 mm to 33.29 ± 
0.05 mm (first and second cycle in the 6 MMs system). 

The estimation accuracy displayed a non-monotonic trend 
with respect to the number of magnets. For instance, the 
errors for the four MMs system were among the lowest, 
while those for the six MMs system were among the largest. 
As an example, em for the LMA, when tracking four MMs, 
was as low as 0.18 mm, while it increased to 0.37 mm in the 
six MMs system.  

 
Figure 2. Localization errors (em and ect) and their standard deviations (Sm and Sct) for the static test. All numbers are in mm. 

 

 
Figure 3. Performance of the three algorithms for the four-magnets system (first cycle). The upper row presents the actual and localized trajectory 

followed by MM2 along Y. The lower row shows the distribution of em and ect for all four magnetic markers.  
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The median CT of the LMA ranged from ~3 ms, for the 
single-magnet system, to ~45 ms for the six magnets system, 
and increased by a factor of four, i.e. up to ~216 ms, for the 
nine MMs system (Fig. 5). The median CT of the UKF was 
always larger than that of the LMA. Specifically, the LMA 
was a minimum of 6 (6 MMs system) to a maximum of 50 (1 
MM system) times faster than the UKF. 

IV. DISCUSSION 

In this work we have assessed, through simulations, the 
performance of a multi-magnet localizer, based on three 
different localization algorithms. Overall, our results show 
that the LMA, widely used in the literature, and the TRRA 
have similar performance. The latter actually showed slightly 
better performance in all the performed tests. As an 
advantage, the TRRA implementation we used also allowed 
to set solution boundaries. This helped in reducing the error 
drastically in the case of 9 MMs, where all algorithms failed 
to accurately track the MMs (Fig. 2 and Fig. 4). Thus, if 
information on the movement of the MMs is available a 
priori, the TRRA should be preferred. On the other hand, 
although the UKF algorithm takes advantage of the history of 
the system, it proved to be the worst solution in all respects, 
with the largest localization errors and CT. 

We associated the consistent drop in performance, when 
nine magnets were used, to the particular distribution of the 

magnets (Fig. 1, middle inset). We argue that the magnet in 
the middle of the distribution was “shadowed” by the 
magnets surrounding it, making the algorithms unable to 
track it from the readings of the magnetic field. Indeed, the 
symmetry of the distribution makes the magnet in the middle 
the furthest from the sensors. Thus, the magnetic field it 
generates at any sensors locations is lower than the one 
generated by the other MMs, making the latter dominate the 
readings. 

The UKF suffered from the reduction of the sampling 
frequency, which led to an increase in the pose estimation 
error. This follows from the recursive nature of the algorithm: 
lowering the sampling frequency implies that the filter is not 
able to accurately predict fast dynamics. This behavior is 
evident when MM2 changes direction of movement (Fig. 3). 
At this point, the error associated with MM2 increased by an 
order of magnitude. This happened because the algorithm 
assumes that the underlying process is a real dynamic system, 
which cannot display this kind of abrupt change. In fact, the 
derivative of the trajectory (Fig. 1, lower inset), i.e. its 
velocity, is discontinuous, and this negatively affects the 
estimation accuracy. 

As previously reported [23], the CT of the LMA was 
largely affected by the number of tracked MMs (it increased 
by an order of magnitude from 1 to 6 MMs). This was also 
true for the UKF, but to a lower extent. Indeed, the CT only 
increased by a factor of 2 when moving from 1 to 6 MMs. 
Nonetheless, the UKF always showed CTs two orders of 
magnitude larger than the optimization-based method. This is 
inherent to the complexity of the algorithm, which requires 
the calculation of the inverse of a covariance matrix, which is 
a costly operation when its dimensionality is high. As the 
increased complexity is not justified by increased 
performance (the localization accuracy was lower than the 
other algorithms), the UKF might not be a good candidate in 
solving a multi-magnet localization problem. 

Our results confirm, and extend, previous findings from 
the literature. Indeed, the LMA was found to be an excellent 
candidate for tracking multiple MMs as well. However, the 
TRRA showed even better performance, and could thus be a 
more sophisticated replacement for the LMA. Indeed, the 
former is a more complex algorithm, but freely available C 
implementations of trust region algorithms already exist [33]. 
These could speed up the adoption of this algorithm in both 
desktop and portable applications.  

 
Figure 4. Localization errors (em and ect) and their standard deviations (Sm and Sct) for the dynamic tests. All numbers are in mm. Each cell includes the 

results obtained during the first (above) and second (below) movement cycle. 

 

Figure 5.  Distribution of the computation time (CT) for the LMA 
(blue) and the UKF (red) as a function of the number of magnets. The 

horizontal line indicates the median, the vertical thick line the 

interquartile-range, the vertical thin line extend to the most extreme 
data points, and the dots represent the outliers. 
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This work is a step forward in the development of multi-
magnet tracking systems, as it demonstrates high 
computational efficiency and localization accuracy of the 
tested algorithms in solving such a complex problem. We 
foresee that these algorithms will enable a variety of 
applications based on multiple-magnets tracking systems, 
both in the biomedical field and beyond. 

APPENDIX 

A.  Mathematical description of the UKF algorithm 

The UKF requires a dynamical model describing the 

evolution of its states (the pose and speed of the MMs), as 

well as a model relating the states to the observations. The 

latter corresponds, in our work, to the magnetic dipole 

model, described by (1). As the underlying process is linear, 

the dynamics can be described by the time-invariant 

matrices A and B. In this case, the filter prediction is 

computed as: 

𝝌
𝑘|𝑘−1
𝑖 = 𝑨𝝌

𝑘−1
𝑖 + 𝑩𝒖𝑘, 𝑖 = 0, … , 2𝐿 

𝒙̂𝑘|𝑘−1 = ∑𝑊𝑆
𝑖 𝝌

𝑘|𝑘−1
𝑖

2𝐿

𝑖=0

 

𝑷𝑘|𝑘−1 = (∑𝑊𝐶
𝑖

2𝐿

𝑖=0

(𝝌𝑘|𝑘−1
𝑖 − 𝒙̂𝑘|𝑘−1)(𝝌𝑘|𝑘−1

𝑖 − 𝒙̂𝑘|𝑘−1)
𝑻
) + 𝑸 

 

Where vector χ corresponds to the 2L+1 sigma points 

generated by the algorithm [19], and L corresponds to the 

number of states of the filter. The state of each MM can be 

described as xM = [x
T
 v

T
 θ

T
]

T
, where vectors x, v, and θ, 

represent, respectively, its 3D position, its 3D velocity and 

the two angles used to represent its orientation (spherical 

coordinates). Eight variables are thus required to describe 

the dynamics of each MM. The UKF state vector is then 

constructed, for N magnets, as: 

𝒙 =

[
 
 
 
 
𝒙𝑴,𝟏

⋮
𝒙𝑴,𝒊

⋮
𝒙𝑴,𝑵]

 
 
 
 

 

Vector x has thus dimensions 8N. Using a constant 

velocity model [25], the dynamics of each MM can be 

described as: 

𝑨𝑖 =

[
 
 
 
 
 
 
 
1 0 0 𝑇 0 0 0 0
0 1 0 0 𝑇 0 0 0
0 0 1 0 0 𝑇 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

 

 

This block is repeated N times, to construct matrix A as: 

𝑨 = [

𝑨1 𝟎 ⋯ 𝟎
𝟎 𝑨2 ⋯ 𝟎
⋮ ⋮ ⋱ 𝟎
𝟎 𝟎 𝟎 𝑨𝑁

] 

The entries of A for any two state vectors xM,i and xM,j, 

with i ≠ j, are equal to zero as it is assumed that the state of 

one MM does not influence the dynamics of all others. 

Matrix A has dimensions 8N × 8N. It is assumed that vector 

uk cannot be measured, and hence all entries of matrix B are 

equal to zero. 

Matrix Q, that describes the process noise, is constructed 

by repeating the following block N times, analogously to 

matrix A: 

𝑸𝑖 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑇4

4
𝜎𝑥

2 0 0
𝑇3

2
𝜎𝑥

2 0 0 0 0

0
𝑇4

4
𝜎𝑦

2 0 0
𝑇3

2
𝜎𝑦

2 0 0 0

0 0
𝑇4

4
𝜎𝑧

2 0 0
𝑇3

2
𝜎𝑧

2 0 0

𝑇3

2
𝜎𝑥

2 0 0 𝑇2𝜎𝑥
2 0 0 0 0

0
𝑇3

2
𝜎𝑦

2 0 0 𝑇2𝜎𝑥
2 0 0 0

0 0
𝑇3

2
𝜎𝑧

2 0 0 𝑇2𝜎𝑥
2 0 0

0 0 0 0 0 0 𝑇2𝜎𝜃
2 0

0 0 0 0 0 0 0 𝑇2𝜎𝜑
2
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Where each σ denotes the standard deviation of the 

acceleration in each dimension. These values can be tuned to 

exploit a priori knowledge about the movement of the MMs. 

Low values should be used for the dimensions were no 

movement is expected. 

Matrix R describes the uncertainty of the sensor readings 

and was set to: 

𝑹 = 𝑰3𝑃×3𝑃

[
 
 
 
 
𝜎1

2

⋮
𝜎𝑗

2

⋮
𝜎𝐿

2]
 
 
 
 

 

Where I3Px3P is the 3P × 3P identity matrix, and σ 

describes the standard deviation of the readings of each 

sensor. P corresponds to the total number of 3D MF sensors. 

This choice of R assumes that there is no correlation 

between the noise signals.  

Our UKF implementation used the Cholesky 

decomposition to calculate the square root of matrix 

(𝐿 + 𝜆)𝑷𝑘|𝑘−1
𝑎

. To compute the inverse of matrix Pyy the 

LUP/LUPQ decomposition was used. The following values 

were used to tune the filter [19]: β = 2, κ = 0, α = 0.001. 
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