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Abstract— This paper introduces a method for robotic steer-
ing of a flexible needle inside moving and deformable tissues.
The method relies on a set of objective functions allowing
to automatically steer the needle along a predefined path.
In order to follow the desired trajectory, an inverse problem
linking the motion of the robot end effector with the objective
functions is solved using a Finite Element simulation. The main
contribution of the article is the new constraint-based formu-
lation of the objective functions allowing to: 1) significantly
reduce the computation time; 2) increase the accuracy and
stability of the simulation-guided needle insertion. The method
is illustrated, and its performances are characterized in a
realistic framework, using a direct simulation of the respiratory
motion generated from in vivo data of a pig. Despite the
highly non-linear behavior of the numerical simulation and
the significant deformations occurring during the insertion,
the obtained performances enable the possibility to follow the
trajectory with the desired accuracy for medical purpose.

I. INTRODUCTION

Radio-Frequency Ablation (RFA) is a percutaneous ther-
apy that uses heat to destroy cancer cells. Such treatments
provide alternative therapeutic options for the management
of tumors or metastasis that are considered unresectable with
traditional approaches (concerns about the age, the extent or
localization of the disease). RFA has proven to be a viable
option with limited complications for patients with hepatic
diseases of small volume [1].

Despite their benefits, such needle-based approaches raise
significant difficulties. The required accuracy for RFA of
liver tumors is typically around 2 to 3 mm [2], which is
particularly challenging as needles are manipulated from
outside the patient using intraoperative images offering poor
visibility of internal structures. Besides, tumors can be
located deeply inside the liver volume with poor access
conditions (for instance in posterior segments VI or VII),
reducing the ability to control the needle tip close to the
target. In addition, the liver is a very soft organ that tends to
deform in contact with the diaphragm during the respiratory
motion resulting in non-uniform displacements (up to 5 cm).

The previous difficulties explain why interventional radi-
ologists usually need several attempts to reach the targeted
zone or to operate under apnea [3], which increases the
intervention time and the risks for the patient. Robotic
systems have the potential to assist percutaneous needle
insertion to overcome limitations due to human factors and
increase the accuracy of tool positioning. In the last decade,
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numerous solutions have been proposed for robotic needle
steering. Most of them are image-guided [4], [5] since they
rely on data coming from imaging devices (MR, CT, US or
a combination of these modalities).

The most common strategy to control a needle with a
robotic system is to manipulate the needle base position in
order to modify the needle tip path inside tissues [4], [6]. In
this process, the six degrees of freedom (DOF) of the needle
base are controlled by the robot end effector to which the
needle base is attached. Relating these 6 DOF to the needle
tip motion is a difficult inverse problem, especially if this
problem has to be solved in real time. Other approaches
exploit the possibility of changing the curvature of beveled-
tip flexible needles. The method called duty-cycling consists
in spinning the needle along its insertion axis in order
to modify the path taken by the beveled tip [7], [8], [9].
However, the applicability of duty-cycling approaches in
hepatic tissues remains an open question due to the risk of
damaging the organ. Other authors [10] propose to deform
the tissue to move the target on the needle’s trajectory.
However, such methods have only been applied for breast
and prostate surgery.

Recent surveys are of particular interest regarding robotic
needle guidance systems [11], [12]. While some patient-
mounted robots partially compensate for physiological mo-
tions [6], the motions of internal organs are by far too
complex and different from skin motions to be compensated
for using purely passive solutions. Robotized insertions in
liver tissues are usually performed during apnea [6], [13] in
order to reduce organs motion. Yet, the complete procedure
is generally too long for a single apnea. Therefore, the
deformation of both the organs and surgical needles remains
an open problem that limits the development of automatic
tasks performed by the robots in the operating room [12].

In the context focused on deformations, the control of
needle insertions evokes the field of soft robotics. Recently,
original works propose to rely on Quadratic Programming
(QP) to solve equations of motion and control soft robots in
real time [14]. However, the optimization problem is defined
using the actuators’ space of the considered robot which has
not yet been applied to needle insertion where the motion of
the tissue is completely independent from the robotic system.

The coauthors of the present article recently proposed to
rely on a Finite Element simulation to steer a needle in
deformable environment [15], [16]. The robot-assisted needle
insertion relies on the actuation of the 6 DOF of the base
of the needle. Assuming a reachable trajectory defined by
the radiologist at the planning step, the method provides
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displacements of the needle base in order to simultaneously
follow the trajectory and take into account needles and
tissue deformations during the insertion. Yet, the method is
currently limited to insertions where deformations only result
from the needle penetration and displacements of the robot.

In this paper, the problem of needle insertion during
respiratory motions is addressed specifically. Numerical op-
timizations and stabilization techniques are proposed to
significantly reduce the computation time of inverse steps
while increasing the stability of the system. In the proposed
scenario, the performances achieved by this novel inverse FE
simulation method are crucial to enforce the accuracy and the
convergence during the insertion. The method is illustrated
and characterized in a realistic simulation where the motion
of the liver during breathing cycles was generated from in
vivo data of a pig under anesthesia.

II. BACKGROUND

In this section the necessary FE simulation background is
summarized to ease the understanding of the present article.

A. Real time finite element methods

Following Courtecuisse et al. [17], an implicit integration
of Newton’s second law of two deformable bodies n ∈ {1, 2}
(needle and tissue) interacting through Lagrangian Multipli-
ers requires to solve the Karush-Kuhn-Tucker (KKT) system:

A1∆v1 + HT
1 λ = b1

A2∆v2 + HT
2 λ = b2

H1∆v1 + H2∆v2 = δ

(1)

(2)
(3)

with An the so-called stiffness matrix encoding the linearized
elastic properties of the material (inertial, stiffness and
damping) bn the forces exerted on the model (external and
internal) at the end of the time step and ∆vn the variation of
velocities during the time step. Hn stands for the Jacobian of
the constraints linking the motion’s space to the constraint’s
space. Hn gathers three types of constraints:

1) Bilateral constraints used to attach the needle’s base to
the robot end effector.

2) Needle insertion constraints coupling displacements of
the needle with the tetrahedral mesh [18].

3) Registration constraints used to impose displacements
in order to maintain the consistency of the models.

Lagrangian multipliers λ corresponding to the models
response forces enforce the constraints and δ are their
respective violations.

The KKT system is solved with a four-step method [17]:
1- Free motion: Isolating ∆vn in equations (1) and (2)
and putting λ = 0 allows decomposing the problem. We
first consider the internal and external forces applied to the
models without considering constraints:{

∆vfree
1 = A−11 b1

∆vfree
2 = A−12 b2

(4)

These equations can be solved efficiently using a
Conjugate-Gradient method on GPU [19]. Yet, in the context

of inverse simulations, this step remains expensive since An

are large matrices whose dimensions are proportional to the
number of nodes of the meshes.
2- Constraints definitions: Matrices Hn are defined at the
beginning of the time step either performing a collision
detection or associating nodes in order to perform the reg-
istration of the models. By substituting equations (4) in (3)
we obtain the following equation :∑

n∈{1,2}

HnA
−1
n HT

n︸ ︷︷ ︸
W

λ =
∑

n∈{1,2}

Hn∆vfree
n︸ ︷︷ ︸

δfree

−δ (5)

where δfree is directly evaluated using the free motion com-
puted in equation (4). W is known as the compliance ma-
trix, encoding the mechanical coupling between constraints
through the mechanics of the models. Its formulation is
equivalent to the computation of the Schür complement of
the system. Although it could be computed on GPU [17], it
remains the most expensive task of the simulation. Yet, the
size of W is equal to the number of constraints, which is
usually much smaller than the number of nodes.
3- Constraints solving: Equation (5) forms a Non Linear
Complementary Problem (NLCP) where λ and δ are un-
known. Indeed, Coulomb friction is simulated along the shaft
of the needle and unilateral constraints are used to simulate
contacts based on Signorini’s law. This equation is solved
using a modified Gauss-Seidel algorithm allowing for the
iterative computation of λ and δ (see [16] for details).
4- Corrective motion: Once the constraint forces λ are
known in the constraint space, they are re-projected in the
motion space using the following equation:{

∆v1 = ∆vfree
1 −A−11 HT

1 λ

∆v2 = ∆vfree
2 −A−12 HT

2 λ
(6)

B. Robotic Control based on inverse simulations

In [15], the robotic needle steering is formulated as a
minimization problem. The cost function is composed of
several objective functions chosen to insert the needle along
the predefined path. Due to the non-linearity of FE models
and constraints, the above simulation is used to numerically
derive the Jacobian of the simulation J linking the motion
of the needle base to the objective functions minimization.
Six simulation steps are performed where each DOF of
the needle base are successively disturbed, allowing for the
evaluation of the variations of objective functions in the
numerical models.

To reach computation times compatible with robotic con-
trol, the method computes the Stiffness matrices, the Ja-
cobian of the constraints and the Compliance matrix only
once for all the inverse steps. Indeed, Hn and An are
linearized around the model positions at the beginning of
each simulation step. Therefore they do not depend on the
needle’s base variations. It allows to solve most of the
operations of the inverse steps in the constraint space which
is much smaller than the motion space (i.e. only solving
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equations (5) and (6) corresponding to steps 3 and 4 of the
above methods).

The method was validated performing the insertion of
a flexible needle inside a deformable polyurethane foam
[16]. A set of markers m(i) located on the surface of the
model were used to register the models and enforce their
consistency with real structures (see Fig. 1). The references
for the robot end effector position and orientation are derived
solving the following equation:

T(i+1) = X (i) − J+(i)(k� e(i)) (7)

with X (i) the current position (i.e. at time i) of the robot and
T(i+1) the next desired position. e(i) are the values of the
objective function E(q,X ,m) that depend on the positions
of the FE meshes q, the position of the robot X and the
markers m. The Hadamard product � is used to scale the
values of the objective function e(i) with the gain k.

Fig. 1. Control loop using the inverse FE simulation of a needle insertion.
The inverse problem is solved for each simulation step i providing the next
desired position T(i+1). The motion of the robot is then asynchronously
interpolated by the low-level controller.

During the insertion, vertical and lateral deformations
were generated leading to significant modifications of the
undeformed trajectory and important bending of the needle.
Despite these strong modifications, the method was able to
maintain the tip of the needle within the 1 cm thick foam
following the desired path with errors smaller than 1 mm.
However, the method is not efficient to take into account
respiratory motions in the same way.

III. METHODOLOGY

In this section we introduce the objective functions needed
to steer the needle inside moving organs. Then, we propose
a constraint-based formulation of the objective functions
allowing to significantly reduce the computation time. And
finally we describe our stabilization and regularization strate-
gies needed for the control.

Following [16], errors of the model are corrected in real
time thanks to a non-rigid registration. Although this step
is necessary, the non-rigid registration of deformable bodies
is not addressed here as it goes far beyond the scope of
this paper. More importantly, contributions of the present
article are generic and do not depend on the registration
procedure as long as a set of points m are available to impose

displacements and enforce the consistency of the models. In
addition, to steer the needle outside the patient, the proposed
solution relies on the tracking of the insertion point p located
on the skin. Finally, the low-level control of the robot will
not be addressed in this paper. Instead, our goal is to provide
Cartesian positions T(i+1) as fast as possible to the robotic
system that will perform the interpolation of the robot motion
assuming a constant velocity (see Fig. 2).

Fig. 2. Overview of communications and objective functions.

A. Objective functions
To steer the needle in the dynamic deformable environ-

ment, we propose to minimize the absolute value of the 3
following objective functions at each simulation step:

1) The needle position along the predefined path: This
objective function is a three-dimensional vector linking
the needle tip to a target point that moves along the
path. Its expression is given by ep = qtarget − qtip and
is represented by the yellow vector in the figure 2.

2) The needle orientation outside of the patient: The
second one is a one-dimensional vector. Its expression
is given by ea = arccos(ntip · ntraj), with ntip the nor-
malized direction at the needle tip and ntraj the tangent
to the trajectory at the entry point of the skin.

3) The motion of the entry point: The last one is de-
fined as the two-dimensional vector linking the current
position of the penetration point pc and the position pp
stored at the moment of the puncture. Its expression is
given by ee = projP(pc − pp) which corresponds to
the distance between insertion points projected on the
tangential plane P at the surface of the skin. This is
represented by the green vector on the figure 2 and with
the normal plane in red. The purpose of the function
is to avoid tearing the skin during the insertion.

The objective functions are evaluated using the inverse
simulation to compute the Jacobian of the simulation whose
dimension depends on the position of the needle tip. Outside
the patient the size is (4×6) whereas inside the size is (5×6).

The inverse simulation involves the mechanical modeling
of the needle, the liver constrained by the aforementioned
tracked points and the interaction between those two models.
The desired path is defined inside the liver model, and
follows its motion. This allows computing the values of all
the considered objective functions described above.

B. Constraint Objective functions
All the physical interactions used in the inverse simulation

are expressed through Lagrangian multipliers (needle/tissue
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constraints, attach of the needle with the robotic arm and
registration constraints), allowing this way to obtain the
complete mechanical coupling between constraints in the
condensed system matrix W. This choice is necessary to
compute the Compliance matrix once for all the inverse steps
as proposed in [16]. Yet, the computation of the J requires
the evaluation of the objective functions in the motion’s
space. In other words, the linear system of equation (6) must
be solved for each variation of the needle’s base in order
to derive robotic commands in equation (7). Although this
operation is usually not the bottleneck of direct simulations,
it raises computation time issues when it’s performed several
times in a close robotic loop.

In order to get rid of the re-projection operation, we
introduce the constraint objective functions. We propose to
formulate the objective functions as virtual constraints and
integrate them in the H matrix. The H matrix is therefore
augmented with 4 or 5 lines depending on the position of the
needle. The objective functions ē are projected in the con-
straint space according to the lines introduced in H. These
additional constraints do not have a physical meaning but
instead they allow to compute the variation of the objective
functions directly in the constraint’s space according to the
needle’s base perturbations. For this purpose, the Compliance
matrix is modified as follows:



w1,1 . . . w1,k

...
. . .

...
wk,1 . . . wk,k
wk+1,1 . . . wk+1,k

...
. . .

...
wk+p,1 . . . wk+p,k

0(k+p,p)





λ1
...
λk
0
...
0


=



δ1
...
δk
ē1
...
ēp


(8)

Lines 1 to k correspond to the original Compliance ma-
trix used to impose constraints in the inverse simulations,
whereas lines k+1 to k+p correspond to the constraint ob-
jective functions. The mechanical influence of the constraint
objective functions on all the other constraints is removed
by setting columns k + 1 to k + p to 0. This enforces that
mechanical constraints are not impacted by the constraint
objective functions. Instead, the mechanical influence of all
the other constraints is conserved (lines k + 1 to k + p)
allowing retrieving the value of the objective functions ē
without any need for re-projection in motion’s space.

It is important to note that the proposed solution does
not modify the Jacobian J for linear objective functions
(position-based, such as ep). However, since linearizations
are performed at the construction of H, our method does
not provide the same values for nonlinear functions (such as
angular functions as used in [16]). Although the evaluation
of nonlinear functions may be possible with additional re-
projections of only the concerned DOF, we used directly the
linearized version which is sufficient to build the Jacobian.
Indeed, the sign of objective functions are conserved and
their values are later scaled with the gain k.

The convergence criteria of the Gauss-Seidel is defined

as the norm of the variation of the λ vector between two
successive iterations. To enforce that the convergence is not
modified by the constraint objective functions, the associated
forces are set to 0 at each iteration of the Gauss-Seidel.

C. Stabilization

We propose to compute the centered Jacobian where each
line j is obtained with:

Jj =
E(q,X + ∆X j ,m)− E(q̄, X̄ −∆X j ,m)

2||∆X j ||
(9)

with ∆X j the perturbation of the jth DOF of the needle’s
base. With regards to [16], this formulation requires to
compute 6 additional inverse simulation steps (12 steps) to
construct the centered Jacobian. However due to the nature
of the constraints (complementarity, friction), it allows to
increase the spatial validity domain of the Jacobian.

In addition, the problem may become ill conditioned
during the insertion. Therefore, we use a Tikhonov regular-
ization while inverting the Jacobian. The pseudo-inverse J+

α

of the Jacobian is computed using the following equation:

J+
α = (JTJ + αU∆σ(JTJ)<αV

T )JT (10)

where UDVT is the singular value decomposition of JTJ,
and ∆σ(JTJ)<α a diagonal matrix with the diagonal element
∆k,k defined by :{

∆k,k = dk,k if dk,k > α
∆k,k = α otherwise (11)

With dk,k the elements of the matrix D and α the regular-
ization parameter.

Finally, the pseudo-code of one step of the inverse sim-
ulation is shown in the algorithm 1. With regards to [16],
this formulation requires to compute 6 additional inverse
simulation steps (12 steps) to construct the centered Jacobian.

Algorithm 1: Optimized inverse simulation loop
1 Get input data: X (i),m(i);
2 Free Motion: ∆vfree = A−1b ;
3 Constraint and Objective Definition: H;
4 Compute Compliance: W =

∑
HA−1HT ;

5 Compute error: ē0 = E(q,X ,m);
6 for j= 0 to 6 do
7 for k = {-1,1} do
8 Compute Violation: δj,k;
9 Compute objective: ēj,k = E(q,X + k∆X j ,m);

10 Solve Constraints: W
[

λj,k

0

]
=

[
δj,k

ēj,k

]
;

11 Compute Jacobian: Jj= ēj,1−ēj,−1

2‖∆Xj‖ ;

12 Solve the inverse problem: ∆X = −J+
α · ē0;

13 Send the target: T(i+1) = X + ∆X ;
14 Compute Violation: δ ;

15 Solve Constraints: W
[

λ
0

]
=

[
δ
0

]
16 Corrective Motion: q = ∆vfree −A−1HTλ ;

Line 1 consists in the acquisition of the data from the
environment. Line 2−4 concerns the computation of the me-
chanical matrices (performed only once for each simulation
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step). Line 6− 7 stands for the computation of the centered
Jacobian J. Line 8−11 provide successively the line j of the
Jacobian. Line 12 − 13 solve the inverse problem and send
the next position to the robotic system. Line 14−16 compute
the positions of the FE models for the next simulation steps.

IV. EXPERIMENTAL FRAMEWORK

The method is evaluated using a realistic simulation (called
direct simulation) of a pig during the respiratory motion that
has been generated from in-vivo data. A set of 5 metallic
fiducials has been inserted percutaneously inside the pig
liver. Two CT scans have been acquired providing the 3D
positions of the markers in the extreme positions (inspiration
and expiration). In addition, the 2D displacements of markers
have been recorded and manually segmented in fluoroscopic
images during the breathing cycles. These data have been
extrapolated in 3D solving the 2D/3D registration problem.
Although the acquisition of these data may raise technical
issues in a medical context, it is used as a realistic data set
allowing for the evaluation of the method independently on
the registration procedure/modality.

The direct simulation involves a co-rotational model of
the liver composed of 2660 nodes (12328 tetrahedra), that
was generated from the segmentation of the CT scans. The
model includes the desired trajectory (generated manually by
the interventional radiologist) and the markers. The young
modulus E = 5.5 kPa and the Poisson ratio ν = 0.45 are
chosen according to the literature [20]. Interaction forces
with the diaphragm are simulated. A minimization problem
is solved (offline) to provide displacements of the diaphragm
minimizing the distance between markers of the FE model
and the previous data set. Collisions between the skin and the
liver are also taken into account using the GPU-based method
introduced in [21]. The skin is composed of 144 points
and 450 tetrahedra and parameterized with E = 10 kPa and
ν = 0.3. The model of the needle relies on the Timoshenko
formulation of the beam theory. It is composed of 13 edges,
and parameterized with a Young’s modulus E = 200 GPa,
and ν = 0.3 with a radius of 0, 723 mm. Needle interactions
are simulated allowing for the penetration of the needle in
both the liver and the skin.

The direct simulation has been optimized in order to
enforce a fixed frame rate of 40Hz for any insertion path.
The time step of the simulation has been chosen to 0.025
ms to enforce a real-time simulation of the respiratory
motion. Input robotic commands (here considered as the
displacement of the needle’s base) are provided by a second
simulation called inverse simulation that runs asynchronously
on a separate computer. The inverse simulation provides the
next position T(i+1) at various frequencies, while the direct
simulation performs a Cartesian interpolation of the motion
at fixed velocity of 10 mm/s. Once the needle has reached the
insertion point in the liver (i.e., after the penetration of the
skin), the desired trajectory point qtarget is advanced along
the trajectory at fixed velocity. The trajectory is 7 cm long;
it takes 1 minute to move the target position from the first
to the last point of the trajectory.

The inverse simulation receives positions of markers m
and the current position of the robot from the direct simu-
lation. This simulation involves the FE model of the liver
and the needle. Since the needle is not patient specific, the
same mechanical parameters are used in both the direct and
inverse simulations because it can be estimated offline as
done in [16]. However, the young modulus of the liver is
randomly chosen within the range of 13% variability of
hepatic tissues (see [20] for justification). In addition, due
to the asynchronous nature of our work, all the following
results are averaged over 22 simulations.

In terms of registration accuracy, although the inverse
simulation is only driven by 5 markers (without taking into
account the complex surrounding interactions modeled in the
direct simulation), the mean Hausdorff distance between the
surface of the liver in the direct and inverse simulations is
on average 0.64 mm ± 0.19 when the needle is outside and
2.55 mm ± 1.55 when the needle is inserted.

V. RESULTS

In the following paragraphs, we compare the accuracy
and performances of 4 control strategies. Static denotes a
method where both the trajectory and the needle are assumed
rigid in the inverse simulation. Full stands for the complete
resolution of the FE resolution for each inverse step. Ada.
is the method introduced in [16] (re-projection in motion’s
space) with the objective functions introduced in the section
III-A. Us is the method introduced in the present article. The
suffix -opt means that the stabilization strategies introduced
in the section III-C are used to build the Jacobian J. For all
the simulations, the gain k is chosen to favor the objective
function of the entry point with a factor 2× with respect to
the other objective functions.

Figure 3 summarizes the performances obtained with an
Intel core i7-6700 CPU running at 3.40GHz and a Nvidia
GTX 980. In terms of computation time, Ada. already
provide a speedup of 3.5× compared to Full. Although the
method provides the same range of computation time for
small meshes, Us brings an additional speedup of more than
2× for large meshes. More importantly, the overhead of
inverse steps is independent from the mesh resolution (rep-
resenting this way a smaller percentage of the computation
time when the size of the mesh increase) whereas the cost of
inverse steps with Ada. increase more than 400% between
the smaller and larger mesh.

Simulation Steps (%) Computation

MM IL FE Time (ms)

Mesh Ada. Us Ada. Us Ada. Us Full Ada. Us

Size -opt -opt -opt. -opt -opt. -opt -opt -opt -opt

1128 35.4 59.4 55 13.6 9.6 27 75.7 19.3 12.2

1532 31.2 63.5 59.9 7.4 8.9 29.1 166.6 47.3 24.5

2660 29.9 65.5 61.6 6 8.5 28.5 251 71.1 34.2

Fig. 3. Computation time of different parts of the algorithm 1 using
various mesh resolution. MM: Mechanichal matrices definition (Lines 1-
4), IL: Inverse loop (Lines 7-12), FE: FE resolution (Lines 15-17)
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(a) Nodes:1128 (b) Nodes:1532 (c) Nodes:2660

Fig. 4. Distance in mm (in the direct simulation) between the needle tip and the desired position on the trajectory (corresponding to the norm of the
objective function ‖ ēp ‖) according to the insertion time (s), averaged over 22 simulations. The following methods with the associated colors are compared
for various resolutions of the mesh liver used in the inverse simulation: Static: purple, Full: black Ada.: green, Us: yellow, Ada.-opt: blue, Us-opt: red.

Fig. 5. Mean error and standard deviation between the needle tip and the
last point of the trajectory at the end insertion for various mesh resolution.

The accuracy of the method is now evaluated and com-
pared. The figure 4 shows the distance between the needle tip
and the desired point on the trajectory during the insertion.
The figure 5 shows the distance between the needle tip and
the last point of the trajectory at the end of the insertion.
The static method does not depend on the mesh resolution
but for the ease of reading, it is displayed with the other
methods in figure 4. static cannot account for deformations
and quickly diverge to a final error of 7 mm. The oscillations
are the consequence of the breathing motion that periodically
moves closer or further away the target on the trajectory.

Although the method Full-opt relies on complex biome-
chanical models to steer the needle, the significant delay
introduced by solving the complete FE simulation for each
inverse step prevents from anticipating deformations of the
respiratory motion. Indeed, less than 3 FPS are obtained
for the mesh composed of 2660 nodes, resulting in the
divergence of the method for all the tested scenarios. The
main reason is the fact that interaction constraints between
the needle and the liver are created at different locations
in the direct and inverse simulations (because of the delay).
The resulting motion estimated by the Jacobian in the inverse
simulation is therefore significantly different from the motion
in the direct simulation which results in over compensations,
significant positioning errors and numerical instabilities due
to the large deformations generated in the inverse simulation.

The optimizations -opt significantly improve the stabil-
ity and the accuracy of the system. Indeed, without opti-
mizations both methods Ada. and Us provide either large
positioning errors or are subject to instabilities preventing
to perform the complete insertion. However, optimizations
allow the methods to converge, except for Ada.-opt with
the smaller mesh which tends to create over-constrained
problem preventing to generate the necessary deformations
to reduce errors during the insertion. Maintaining 20 FPS
in the inverse simulation, Us-opt provides an average error
of 1.08 mm ± 0.44 with the finer mesh, resulting in repro-
ducible results (despite the randomized Young modulus and
the asynchronous computations) that fulfill the recommenda-
tion for RFA procedures (i.e., lower than 3 mm).

Finally, the chosen maximal velocity achieved by the robot
in the direct simulation does not influence the results since
the robotic trajectories of the end effector is generated to
follow the respiratory motion at the same speed. Indeed,
another important benefit of the proposed solution lies in the
fact that the average Von Mises Stress measured in the direct
simulation with Us-opt is 2.32 kPa, which corresponds to a
reduction of 91.7% compared to Ada.-opt, allowing this way
to automatically compensate for the deformations induced by
the breathing motion.

VI. CONCLUSION

A numerical method has been introduced allowing for
the computation of complex FE simulations at sufficient
frame rate to steer a needle in deformable and moving
tissues. The main contribution is the introduction of the
constraint objective functions used to build the Jacobian of
the simulation in the constraint space, reducing this way the
computation time while increasing the accuracy and stability
of the system. The method was evaluated in a realistic frame-
work generated from in vivo data. The proposed solution
fulfills recommendations for RFA surgery. Future works will
aim to apply the method to a robotic system. This might help
to better anticipate external motions, and reduce the stress
generated by the needle during the insertion.
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