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Abstract— Accurate real-time catheter segmentation is an
important pre-requisite for robot-assisted endovascular in-
tervention. Most of the existing learning-based methods for
catheter segmentation and tracking are only trained on small-
scale datasets or synthetic data due to the difficulties of
ground-truth annotation. Furthermore, the temporal continuity
in intraoperative imaging sequences is not fully utilised. In
this paper, we present FW-Net, an end-to-end and real-time
deep learning framework for endovascular intervention. The
proposed FW-Net has three modules: a segmentation network
with encoder-decoder architecture, a flow network to extract
optical flow information, and a novel flow-guided warping func-
tion to learn the frame-to-frame temporal continuity. We show
that by effectively learning temporal continuity, the network
can successfully segment and track the catheters in real-time
sequences using only raw ground-truth for training. Detailed
validation results confirm that our FW-Net outperforms state-
of-the-art techniques while achieving real-time performance.

I. INTRODUCTION

In cardiovascular surgery, endovascular intervention offers
many advantages compared to the traditional open sur-
gical approaches, including smaller incisions, less trauma
for patients, local instead of general anesthesia, stability,
and more importantly, reduced risks for patients who have
comorbidities [1]. Endovascular intervention involves the
manipulation of catheters and guidewires to reach target
areas in the vasculature to deliver a treatment (e.g. stenting,
ablation or drug delivery [2]). Such tasks require a high level
of technical skills to avoid damage to the vessel wall, which
could result in perforation and hemorrhage, or dissection
and organ failure, all of which can be fatal. Despite their
relative advantages, endovascular procedures still present
some limitations such as limited sensory feedback, misalign-
ment of visuo-motor axes, and the need for high dexterity
from the operators [3]. Robotics and computer assistance
have been integrated into the clinical workflow to provide
augmentation of surgical skills in terms of enhanced dexterity
and precision [4]–[12].

As a pre-requisite to robot-assisted intervention, the task
of catheter segmentation can provide essential visual or
haptic feedback for the surgeons. For example, in [10], a
vision-based force sensing is developed based on the tip
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Fig. 1. Catheter segmentation in 2D X-ray fluoroscopy sequences. Top
row: The X-ray images of the catheter advancing within an aortic phantom.
Bottom row: An illustration of segmented results.

position of catheter and the vasculature. However, in routine
practice, damages to the vessels are generated not only by
the contact of the catheter tip with the vessel wall, but by the
contacts between the entire catheter and the endothelial wall.
Therefore, delineation and tracking of the entire catheter are
essential. However, autonomous catheter segmentation is not
a trivial task for two main reasons. Firstly, in the X-ray
image, catheters can be easily confused with other similar
linear structures like blood vessels due to its low contrast.
Secondly, during clinical trials, catheters and guidewires can
have a sudden and large deformation movement. This leads to
the fact that traditional methods [13]–[16] based on primitive
features of catheter appearance have limited generality and
would not be able to segment catheters in real-time and
dynamic surgical environments.

Recently, machine learning, especially deep learning has
been widely adopted as a novel approach for medical image
segmentation [17]–[19]. The effectiveness of deep learn-
ing comes from the ability to handle a large amount of
multimodal input data [20]–[22]. However, this advantage
becomes a potential problem in catheter segmentation since
it is not easy to create large-scale datasets with pixel-wise
labels. This is because the annotation task requires a certain
amount of medical expertise, while manually labeling is very
tedious, especially for objects with elongated structures such
as catheters and guidewires. Due to these challenges, recent
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deep learning methods for catheter segmentation mainly train
on a very small dataset [23] [24], use synthetic data [25], or
create ground-truth based on a particular observation about
pixel intensity [26]. These assumptions technically limit the
power of deep learning and the generality of the methods.

In this paper, we propose Flow-guided Warping Net (FW-
Net), a new end-to-end framework for catheter segmentation
in 2D X-ray fluoroscopy sequences (Fig. 1). Our hypothesis
is that deep network can be trained using the raw ground-
truth while the overall accuracy can be improved by effec-
tively learning the temporal continuity from X-ray sequences.
In particular, we first create the raw ground-truth using a
vision-based approach [27], then we design FW-Net with
three modules: i) a segmentation network, ii) a flow network,
and iii) a novel flow-guided warping function. We train FW-
Net on raw ground-truth data and employ the flow-guided
warping function to learn the temporal continuity between
consecutive X-ray frames. This will encourage the network
to predict based on both the raw ground-truth and sequential
information, hence potentially improve the accuracy.

The rest of the paper is organized as follows. We re-
view the related work in Section II, then describe the data
collection process on our robotic platform in Section III.
In Section IV, we present the new end-to-end architecture
for effectively segmenting the catheter from raw ground-
truth. The experimental results are presented in Section V.
Finally, we conclude the paper and discuss the future work
in Section VI.

II. RELATED WORK

Recently, there has been an increasing effort in segmenting
catheters and guidewires from X-ray images. These method-
ologies can be divided into two main categories: vision-based
approach and learning-based approach.

Traditional methods for catheter segmentation mainly used
primitive image level cues such as pixel intensity, texture,
or histogram [13]–[16], [28], [29]. In [30], the authors
introduced a method based on Hough transform for detecting
supporting device position in adult chest X-ray. Similarly,
Kao et al. [31] proposed a system to detect endotracheal
tubes on pediatric chest X-ray image using local features
and multiple thresholds. Keller et al. [32] introduced a
semi-automated method for catheter detection and tracking
using prior information from users input. Mercan et al.
[33] proposed to use local and global curvature features
with controllable smoothness for guidewire segmentation.
More recently, the authors in [27] used the multiscale vessel
enhancement filter and adaptive binarization technique for
detecting catheters and guidewires in real-time. A major
drawback of all methods based on thresholding techniques
is they do not generalize well and are very sensitive to a
particular input X-ray data.

Machine learning techniques are also widely used for
catheter segmentation and tracking [34]–[37]. With the rise
of deep learning, methods based on Convolutional Neu-
ral Networks (CNN) are adapted for catheter segmenta-
tion [38] [39]. Early work in [40] used a simple neural

network to detect chest tubes then post-processed the results
using a curve fitting technique to connect discontinued
segments. In [17] [18], the state-of-the-art U-Net and V-
Net architecture were introduced for data-driven medical
image segmentation. Ambrosini et al. [41] presented an
adaptive U-Net architecture for catheter segmentation in X-
ray sequences. Vlontzos and Mikolajczyk [26] segmented
the catheter from X-ray angiography video with a deep
network and the ground-truth created by a carefully manual
thresholding. Unberath et al. [42] presented a framework
for simulating fluoroscopy and digital radiography from CT
scans, then detecting anatomical landmarks with a deep
network. The authors in [23] [24] used CNN with multihead
for stent segmentation in X-ray fluoroscopy images. More
recently, in [25] a scale-recurrent network was used to detect
catheters in synthetic X-ray data.

While deep learning-based approaches can learn mean-
ingful features from input data, applying deep learning to
catheter segmentation problem is not straightforward due
to the lack of real X-ray data, and the tediousness when
manually labeling ground-truth. In this work, we propose to
learn from raw ground-truth data and encode the temporal
consistency between neighborhood X-ray frames. This will
help the network rely more on the temporal information to
segment the catheter in X-ray sequences.

III. DATA COLLECTION

Fig. 2. CathBot robotic platform for fluoroscopy and MR-guided endovas-
cular interventions. Left: Master device. Right: MR-safe slave robot.

A. CathBot

In this work, we collect sequences of X-ray data during
the intervention using the CathBot [5] robot. CathBot (Fig. 2)
comprises a versatile master-slave setup and navigation
framework. Unlike previous platforms, the robot can be
safely integrated and used in Magnetic Resonance (MR) en-
vironments thanks to pneumatic actuation and additive man-
ufacturing. The master robot is an intuitive human machine
interface (HMI) which mimics the human motion pattern
(i.e. grasping the instrument followed by insertion/retraction
and/or rotation) and provides haptic feedback to the users
generated by the navigation systems as described in [3],
[10]. Motions are mapped to the 4-DOF MR-safe slave
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Fig. 3. An overview of our FW-Net architecture. The network consists of three modules: a segmentation network with encoder-decoder architecture
and skip connections, a flow network to extract optical flow information from two neighborhood frames, and a flow-guided warping function to learn the
frame-to-frame temporal continuity.

robot, capable of manipulating off-the-shelf catheters and
guidewires.

B. X-ray Data Collection

A vascular soft silicone phantom (Elastrat, Geneva,
Switzerland) of a normal adult human aortic arch was placed
underneath an X-ray imaging system to simulate a patient
lying on the angiography table to undergo an endovascular
procedure. The phantom was connected to a pulsatile pump
to simulate normal human blood flow and optimize the level
of realism for tool-tissue interactions. A professional surgeon
was asked to cannulate three arteries by manipulation of wire
and catheter. Namely, the left subclavian (LSA), left common
carotid (LCCA) and right common carotid (RCCA) arteries.
The cannulation was performed in two scenarios: manual
and robot assisted. During each maneuver, fluoroscopy was
activated by the operator using a pedal. Real-time video
stream of the surgical scene was acquired using an image
grabber (DVI2USB3, Epiphan Video, Ottawa, Canada) from
a vascular imaging system - in this study we have used a
fluoroscopic system for interventional radiology procedure
(Innova 4100 IQ GE Healthcare). The video stream was ac-
quired on a workstation (Windows 7, Intel i7-6700, 3.4GHz,
16GB RAM) and digitalized into image sequence for image
processing.

IV. METHODOLOGY

Our goal is to segment the catheters and guidewires in X-
ray fluoroscopy sequences using the raw ground-truth created
by [27]. Since the selected ground-truth annotation method
does not take into account the temporal continuity, which is
the key information from the X-ray sequences, we construct
a unified framework to effectively learn this information.

Towards this end, we propose FW-Net, a new end-to-end
architecture to effectively segment the catheter in X-ray
sequences using a novel flow-guided warping function. The
overall architecture of our proposed approach is illustrated
in Fig. 3.

A. Segmentation Network

Our specific segmentation task is to compute a binary
mask separating the foreground (i.e., catheter and guidewire)
from the background for every X-ray frame of the video.
Inspired by the effectiveness of deep neural networks in
image segmentation, we build our segmentation branch based
on encoder-decoder architecture [17] [43]. To improve the
real-time performance of the network, we use big convolution
kernels with large strides to extract features from the input
X-ray frame. Since the convolution operation is comparably
cheap with a small number of channels as in X-ray images,
using big kernels does not significantly increase the compu-
tational costs. Furthermore, we combine large strides with
skip connections as in U-Net architecture [17] to maintain
low-level features during the decoding process.

Specifically, the input of the segmentation network is the
RGB X-ray image of size (256 × 256) pixels. The encoder
network has 5 ResNet blocks [44] to extract the depth
features from input images. Each ResNet block consists of a
convolutional layer, ReLU, skip links and pooling operations.
The output map after each ResNet block in the encoder
network has the size of 128, 64, 32, 16, and 8 respectively.
Each decoder block is associated with an encoder. In each
decoder block, the encoder feature map is upsampled using
the deconvolutional operation. Finally, a 2 classes soft-max
layer is used at the end of the decoder network to classify

9969



the background and foreground for all pixels in the current
X-ray frame.

Unlike the traditional image segmentation problem, in
catheter segmentation, the imbalance between the foreground
and background regions is strongly significant since the
foreground only occupies a small portion number of pixels.
To overcome this problem, we employ the weighted version
of pixel-wise cross-entropy loss function E as in [45]. The
segmentation loss is defined as follows:

Ls = −(1− w)
∑
i,j∈fg

logE(yij = 1; θ)

−w
∑

i,j∈bg

logE(yij = 0; θ)
(1)

where i and j are the pixel location of the foreground
fg and the background bg, respectively; yij denotes the
binary prediction of each pixel of the input image, w is the
foreground-background pixel-number ratio, and θ represents
the network parameters.

B. Optical Flow Network

Extracting optical flow is a fundamental task in video anal-
ysis. Traditional methodologies for this problem have been
studied for decades and mainly used variational approaches
which address small displacements [46]. Recently, deep
learning has been exploited for learning optical flow. In this
work, we adopt the simple version of FlowNet [47], a state-
of-the-art deep neural-based architecture as our flow network.
To decrease the computational complexity, we reduce the
number of convolutional kernels in each layer of FlowNet by
half and hence reduce the overall complexity to one fourth.

In practice, we stack two neighborhood X-ray images
(Ii, Ij) together and feed them through a deep network to
extract the flow motion. Note that, the Ii frame is also the
input frame for segmentation network. Since the computed
optical flow is aligned with the segmentation output, their
shared feature map information can be combined later nat-
urally to generate the segmented map for Ij . Specifically,
our flow network has a sequence of 6 convolutional layers
to estimate the flow motion from consecutive video frames.
All convolutional layers have the stride of 2. Compared to
the segmentation network, the flow network is simpler with
fewer parameters.

C. Flow-Guided Warping Function

Unlike the traditional image segmentation problem, where
the temporal information is not available, in video segmen-
tation, temporal consistency across frames is the key to
success. Our observation is that the consecutive X-ray frames
are highly similar. This similarity is even stronger in the deep
feature maps since they encode high level semantic concepts
from these frames [48]. We exploit the similarity by warping
the deep features from segmentation network with the flow
motion from flow network.

As motivated by Zhu et al. [12], given a reference frame
Ii and a neighbor frame Ij , a flow motion field Mi→j =
F(Ii, Ij) is estimated by a flow network F (e.g., FlowNet).

The feature maps on the reference frame are warped to the
neighbor frame according to the optical flow. The warping
function is defined as:

fi→j =W (fi,Mi→j) =W (fi,F(Ii, Ij)) (2)

where fi→j denotes the feature maps warped from previous
frame Ii to frame Ij . W(·) is the bilinear warping function
applied on all the locations for each channel in the feature
maps. F(Ii, Ij) is the flow field estimated by the flow
network, which maps a location p = (px, py) in frame Ii
to the location p+ δp in frame Ij .

Since the feature maps has several channels, the warping
is performed in each channel as:

ϕi→j(p) =
∑
q

K(q,p+ δp)ϕj(q) (3)

where q denotes all spatial locations in the feature maps, and
K indicates the bilinear interpolation kernel.

Since we employ end-to-end training, the backprogagation
of ϕi→j with respect to ϕi and flow δp is derived as:

∂ϕi→j(p)

∂ϕi(q)
= K(q,p+ δp)

∂ϕi→j(p)

∂F(Ii, Ij)(p)
=

∑
q

∂K(q,p+ δp)

∂δp
ϕi(q)

(4)

Intuitively, the warping function W(·) combines the fea-
tures of the segmentation network with the output of the
flow network in the same region of the reference frame
Ii, then generate the segmentation for that region in the
neighbor frame Ij . This warping process provides more
diverse information on the same image region, such as
deformation and varied illuminations while effectively use
the temporal information from the flow. We also note that
the flow network cannot generate the semantic segmentation
by itself since it only predicts the displacement by optical
flow. Therefore, we need to combine the flow network with
the segmentation network using the warping function W(·)
to generate the segmentation map for the neighbor frame.

Training The network is end-to-end trained using stochas-
tic gradient descent (SGD) with a fixed 0.001 learning rate
and 0.9 momentum. In each mini-batch, a pair of nearby
video frames (Ii, Ij) with 0 ≤ j − i ≤ 6, are randomly
sampled. The total loss is the combination of two cross-
entropy losses as follows:

L = Ls + λLw (5)

where Ls is the loss of segmentation network to generate
segmented map for Ii, and Lw is the loss for generating
segmented map for Ij . λ is the hyperparameter and is
empirically set to 0.4.

In practice, we implement our method using the Tensor-
flow library [49]. The network is trained from scratch until
convergence with no further reduction in training loss. The
training time is approximately 2 days on an NVIDIA GTX
2080 GPU on a dataset with more than 20.000 X-ray frames.
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TABLE I
DICE SCORES OVER THE TESTING SET

Training? Temporal? FPS Dice

TCF [27] No No 10 (CPU) 0.796
U-Net [17] Yes No 2 (GPU) 0.677

Adaptive U-Net [41] Yes Yes 8 (GPU) 0.745
Siamese U-Net [26] Yes Yes 90 (GPU) 0.768

FW-Net (ours) Yes Yes 15 (GPU) 0.821

V. EXPERIMENTS

A. Experimental Setup

Dataset We perform 28 clinical trials using the CathBot
robot, resulting in 28 X-ray videos. Each video describes
the movement of the catheter and guidewire in each trial
and is approximately 2− 5 minutes long. We extract X-ray
frames from each video at 8 frames per second. In total, our
new X-ray dataset has 25, 271 frames from 28 sequences.
We resize all the frames to (256× 256) pixels before using
them in our network. The raw pixel-wise ground-truth of
the frames is created using the method in [27]. Due to
the nature of the technique in [27], both the catheter and
guidewire are considered as one class in our experiment. For
quantitative evaluation, we manually label 2 sequences with
approximately 1, 000 frames for testing, and use all frames
from the other videos for training. We notice all labels for
training are created automatically by [27], and no further
manual human correction is needed.

Metric As the standard practice in binary segmentation,
we use the Dice metric to evaluate the segmentation results.
The Dice index is defined between the ground-truth mask
X and the predicted mask Y as follows:

Dice =
2||X ∩ Y ||
||X||+ ||Y ||

=
2TP

2TP + FP + FN
(6)

where TP denotes the true positive number of labeled pixels,
FP indicates the false positive pixels, and FN is the false
negative pixels.

Baseline We compare our results (FW-Net) with the
following state-of-the-art methods: U-Net [17], Siamese U-
Net [26], Adaptive U-Net [41], and TCF [27]. We note that
TCF [27] does not require training since it used vision-
based technique, while all other methods are trained on
the same training set with raw ground-truth. Within the
deep learning methods, the U-Net architecture does not take
into account the sequential information, while our network,
Siamese U-Net [26], and Adaptive U-Net [41] exploit the
use of temporal information.

B. Results

Table I summarizes segmentation results of our method
and the baselines on the testing set. The results clearly show
that our FW-Net consistently improves over the state-of-
the-art. In particular, FW-Net achieves the Dice score of
0.821, which is a concrete improvement over the second-
best method. It is worth noting that FW-Net outperforms
the original approach U-Net approach by a large margin of

14.3%. This result is explainable since the U-Net architecture
is designed for an individual frame and does not take into
account the temporal information, while our FW-Net is
designed to learn the frame-to-frame temporal continuity
effectively from X-ray sequences.

We also observe a significant improvement of our FW-Net
over Adaptive U-Net and Siamese U-Net, which are the deep
learning-based methods exploit the temporal information.
It shows that our proposed flow-guided warping method
can encode the temporal information more successfully
than Adaptive U-Net (which only trains the video frame
sequentially) or Siamese U-Net (which relies heavily on
data augmentation). We also found that all networks exploit
temporal information achieve better results than the original
U-Net. However, since all the network are trained using the
raw ground-truth, other deep networks except our FW-Net
cannot outperform the classical TCF method.

Table I also provides the intuitive inference time of all
methods in frame per second (FPS). Overall, our FW-
Net achieves a speed of 15 FPS on NVIDIA GTX 2080
GPU, which is reasonable for real-time applications. Within
deep learning-based methods, Siamese U-Net has the fastest
inference time at 90 FPS. However, here we notice that
all deep learning methods need to use GPU for real-time
performance, while the TCF [27] method can achieve 10 FPS
on a core i7 CPU. A visualization of the segmented results of
all methods can be found in Fig. 4. More qualitative results
can be found in our supplemental video.

To conclude, our FW-Net can effectively learn the tem-
poral continuity and significantly improves over the state
of the art. Our method is also end-to-end and does not
require data augmentation or any extra post-processing. The
inference time of FW-Net is 15 FPS on a GPU which
allows it to be used in wide range clinical applications. More
details about our project can be found at https://sites.google.com/

site/cathetersegmentation/.

VI. CONCLUSIONS AND FUTURE WORK

We propose FW-Net, an end-to-end and real-time deep
learning framework for catheter and guidewire segmentation
in 2D X-ray fluoroscopy sequences. Our FW-Net consists
of three components to effectively learn the temporal in-
formation: a segmentation network, a flow network, and
a novel flow-guided warping function. We showed that by
learning the temporal continuity, the segmentation result can
be improved even when training with the raw ground-truth
data. The experimental results demonstrate that our FW-Net
not only achieves state-of-the-art results, but also has real-
time performance. Hence, the proposed approach can be
integrated to robotic control frameworks or considered for
generation of haptic feedback with deployment to various
endovascular applications.

Since we use a vision-based method to automatically
generate ground-truth with only binary segmentation mask,
our FW-Net is currently tested with the binary segmentation
problem. In the future, we would like to explore the ability
of FW-Net in multiclass segmentation problem with X-ray
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Fig. 4. A visualization of the segmentation results of an X-ray image sequence. Top row - original X-ray images; Second row - TCF [27]; Third row:
Adaptive U-Net [41]; Fourth row: Siamese U-Net [26]; Fifth row: Our FW-Net. Compared to other methods, our FW-Net shows less over-segmented
regions as well as less disconnected segments.

images, where we can have more classes such as catheter,
guidewire, blood vessel. This will allow FW-Net to become
more useful in clinical scenarios. This further motivates
application to closed-loop control with robotic platforms
[5] that facilitate individual manipulation of catheters and
guidewires. The proposed methodology will be prospectively
fused with advanced user assistance to incorporate the entire
interaction of endovascular instruments and vascular struc-
tures for adaptive generation of haptic feedback [10]. Finally,
the contribution bears great potential for integration into a
novel skill assessment framework with image-based metrics
in endovascular surgery.
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