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Abstract— In the present paper, we propose a novel system-
driven adaptive shared control framework in which the au-
tonomous system allocates the authority among the human
operator and itself. Authority allocation is based on a metric
derived from a Bayesian filter, which is being adapted online
according to real measurements. In this way, time-varying
measurement noise characteristics are incorporated. We present
the stability proof for the proposed shared control architecture
with adaptive authority allocation, which includes time delay
in the communication channel between the operator and the
robot. Furthermore, the proposed method is validated through
experiments and a user-study evaluation. The obtained results
indicate significant improvements in task execution compared
with pure teleoperation.

Index Terms— Adaptive authority allocation, shared control,
teleoperation, Kalman filter, Bayesian filters

I. INTRODUCTION

Autonomous robots highly rely on environment percep-
tion, which could get degraded by various internal and ex-
ternal factors. In particular, concerning vision-based systems,
the internal factors include, among others, noise and its time-
varying nature, and communication failures. In adverse cases,
the perception of the robot may be negatively affected be-
cause of occlusions/image-losses caused by its own motion,
as typified in Fig. 1. Control problems that address tracking
and handling target objects using eye-in-hand cameras are
affected by close range vision degradation or the target going
out of the image [1]. Concerning external factors, sensing
capabilities in field robotics may be affected by illumination
changes, reflections, and shadows on the tracked object [2].

Although automatic control systems (ACS) applied to
autonomous robots have been demonstrated to be capable
of implementing sensitive and complicated tasks [3]–[5],
a human supervision in the control loop is preferable to
appropriately address unforeseen changes in the environment
or robot behavior (see [6, T. 8.1]). Combining these two
concepts leads to a broad control paradigm referred to as
shared control [7]–[11]. One of the methods defined in this
paradigm is mixed-initiative, in which the control commands
to the robot are shared between an ACS and a human opera-
tor using teleoperation [12], [13]. The weights for sharing the
control authority are called authority allocation (AA) factors
[14]. Robotic task-space based load sharing of authority has
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Fig. 1: Example of a high precision industrial task during which the camera
view is occluded by the robotic arm itself (right-most).

been investigated in [15]–[19]. Fixed AA gains have been
employed in [20]–[22] and have been made flexible by using
variable or adaptive authority allocation (AAA) methods as
described in [6], [23]–[25]. Adaptation methods can be based
on human intention recognition [26], [27] and probabilistic
approaches [28], [29]. The aforementioned list of research
in shared control is not and cannot be exhaustive.

The present paper is focused on a particular way of adap-
tation called system-driven adaptation in which the system
resolves authority allocation between the two control agents
and its timing [30]. In [31], related to the method proposed
in the present paper, the trajectory commanded to the robot is
a weighted sum of the trajectories generated by the ACS and
commanded by the human. AA is based on the uncertainty
of the autonomous controller using an a priori noise model.
This might result in modeling errors in the case of time-
varying noise characteristics and the robot will not react to
the changes in the real environment adequately. To the best
of our knowledge, there has been no research work presented
to address system-driven adaptation that depends on real
measurements and aimed to cope with delays in teleoperation
while ensuring stability of the shared control architecture.
The main contributions of the present paper are as follows:

1) We propose a novel metric based on an adaptive
Bayesian filtering framework that facilitates AAA de-
pending on sensor measurements.

2) We ensure the stability of the proposed time-delayed
shared control system by exploiting the time domain
passivity approach (TDPA) [32].

3) We perform experimental validation and a user-study
to evaluate the usability of the proposed system-driven
adaptation method.

To this end, firstly we introduce the ACS as a passivity-
based Cartesian proportional-derivative (PD) controller in
Sec. II and highlight the problem of noisy measurements. In
Sec. III, significance of adaptive Bayesian filtering for time-
varying noise uncertainty is outlined. The main contributions
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are presented in Sec. IV, in which, we firstly propose
the enhancement of the conventional 4-channel architecture
bilateral controller [33] (which is made passive using TDPA
as in [34], [35]), with vision-based autonomy. Secondly, we
propose a metric based on the adaptive Bayesian filtering
framework to enable AAA by using real measurements,
which is followed by a detailed stability analysis. To val-
idate the usability of the proposed system, in Sec. V, we
summarize the results of the conducted experiments and a
user-study, and present the performance comparison with
pure teleoperation. In the user-study, the participants were
required to complete two tasks: one notably being universal
serial bus (USB) plug insertion, which required high accu-
racy in both, positioning and force application. Finally, we
discuss the concluding remarks and possible future directions
in Sec. VI.

II. AUTOMATIC CONTROL SYSTEM (ACS)

The task of the ACS is to regulate the end-effector pose,
gs ≡{ps,θs}, about a Cartesian setpoint g≡{p,θ} as shown
in Fig. 2, where gs,g ∈ SE(3). To this end, the ACS in the
present paper is implemented as a passivity-based Cartesian
PD controller on a n-joint (revolute) non-redundant slave
robot. For this robot, the end-effector pose, gs(q) : Rn →
SE(3), is a objective forward kinematics map of its joint
configuration q ∈ Rn, whose differential is written as, Vs =
J(q)q̇ ∈ R6, where Vs is the end-effector body velocity and
J(q) is the corresponding Jacobian map. Using this Jacobian
transformation, the Cartesian dynamics can be written as,

Λ(q)V̇s +µ(q,Vs)Vs +Γ(q) = Fa, (1)

where Λ(q), µ(q,Vs), Γ(q) and Fa refer to the matrices
of Cartesian inertia and Coriolis/centrifugal terms, gravity
terms, and Cartesian control forces, respectively, and joint
torques are given as, τ = J(q)T Fa (see [36, §5.4]).

Lemma 1: For an n-joint (revolute) non-redundant robot
whose Cartesian dynamics are defined by (1), for a desired
setpoint g ≡ (p,q) (see Fig. 2), the control law,

Fa =−γ(Kp,g,gs)−DVs, (see FPD in [37, Th. 6]), (2)

ensures uniform asymptotic stability of error dynamics,
where Kp and D are diagonal and positive matrices for Carte-
sian stiffness and damping, respectively, and γ(Kp,g,gs) =
dφ(Kp,g,gs) (denoted by orange in Fig. 2) is the differential
of a potential function on the Cartesian error that drives (1)
towards the setpoint g.
Proof: For the considered regulation case, the additional
tracking terms in [Th. 6] [37] can be omitted. Therefore,
for the dynamics system (1), the controller in (2) ensures
uniform asymptotic stability. �

For a vision-based feedback system which provides a
noisy measure of g as g̃ ≡ ( p̃, θ̃), which is dashed in Fig. 2
and is formally modeled later in Sec. III, the control law
in Lemma 1, is written as, Fa = −γ(Kp, g̃,gs)−DVs. This
shows that the stiffness term gets affected by the degraded
measurements and hence makes the ACS vulnerable to it. In
the rest of the paper, the following definition is used.

g

gs

{I}

{T}

{E}

γ(Kp,g,gs)

g̃

Fig. 2: Diagrammatic description of the task in which an inertial vision-
based measurement, g̃ ≡ {p̃, θ̃} (dashed), is used to regulate the inertial
end-effector pose, gs ≡ {ps,θs}, about the inertial setpoint g ≡ {p,θ}.

Def. 1: Given α,β ∈ [0,1], α(t)+β (t) = 1, the authority
allocation blending function [12] is, Fs = α(t)Ft + β (t)Fa,
where Fa, Ft and Fs are the ACS force, teleoperation force
and the total commanded force to the slave respectively.

The main objective of the present paper is to scale Fa with
gain β (see Def. 1) when measurement degradation occurs.
As Bayesian filters provide an associated uncertainty of the
measurements, in Sec. IV-A, this uncertainty is related to β
(or α) to achieve the objective.

III. UNCERTAINTY IN ACS

In this section, the dynamic model for a static setpoint
frame {T} (see Fig. 2) is provided and the significance
of an adaptive Bayesian filter [38, ch. 2] is outlined. For
the sake of completeness, we first describe a simple zero-
acceleration stochastic process model for {T}, whose state
is, x =

[

pT vT θ T ωT
]T

∈ R3 ×R3 ×Q×R3, where
Q ≡ {θ ∈ R4| ||θ || = 1} is the quaternion manifold. The
dynamic model and the output function are written as,

ẋ = f (x), y = h(x), f (x) =









v
νv

1
2 ω ⊗θ

νω









, h(x) =

[

p̃
θ̃

]

, (3)

where g ≡ {p,θ} ∈ R3 ×Q ≡ SE(3) denotes the pose of
{T} relative to {I}, which is a part of the state x and is
measured in this case (see Fig. 2), the velocities v and ω are
the inertial linear and body angular velocities respectively,
and ⊗ is the quaternion multiplication operator. The process
noise in (3) is ν =

[

νT
v νT

ω
]T

∈R6 and Q = E(ννT ) is the
process covariance, where E(•) is the stochastic expectation
of the argument. The measurement noise model is p̃= p+µp

and θ̃ =

[

µθ
1

]

⊗θ , µ =
[

µT
p µT

θ
]T

∈R6, with measurement

noise covariance R = E(µµT ). For Bayesian filtering, (3)
is used as the stochastic model to provide a filtered pose
ĝ ≡ {p̂, θ̂} corresponding to the state g. A full quaternion
representation of θ is not admissible in the Bayesian fil-
tering framework due to the unity constraint and results in
covariance degeneracy [39]. As a result, an unconstrained 3-
parameter a ∈ R3 is used for the quaternion representation
such that E(a) = 03,1. So, simply by replacing θ with a,
we obtain a modified state X =

[

pT vT aT ωT
]T

, using
which we obtain a state error δX = (X − X̂), whose state
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covariance is given by P = E
(

X(x)X(x)T
)

. In Bayesian
filtering, P is the covariance of the state x in (3).

In the classical Bayesian pose estimation problem, a priori
knowledge of uncertainties in measurement noise (R) and
model (Q) is assumed and if the assumption holds, the
automatic controller is fully capable of performing the task
by simply using a filtered pose ĝ. However, in some practical
cases, while the physical model uncertainty (Q) is well
known, the measurement uncertainty (R) for a vision-based
system, especially in cases of occlusion and high contrast,
is time-varying. This means that there is a time-varying
uncertainty in the setpoint pose (g) about which the ACS
regulates. This negatively affects ĝ and will cause ACS
errors as pointed out in Sec. II. Using ĝ in (2) results in
an interconnection of a Bayesian filter and ACS, and for
the sake of ease of illustration of passivity of the proposed
method, in this paper, g̃ is used in (2). If the passivity of
the aforementioned interconnection can be established, the
proposed method can also use ĝ in (2); however, this is not
in the scope of the present paper.

In the common class of Bayesian filters, for example, in
the extended Kalman filter (EKF), the time-evolution of P is
independent of real measurements and hence the change in
state uncertainty due to such a measurement degradation is
not reflected. To address this issue, we use adaptive filtering
techniques [40]–[42], which use measurement data (g̃) to
estimate the measurement noise uncertainty (R). Note that
in the Bayesian filtering framework, the state covariance
P(t) also gets adapted due to its dependence on the adapted
measurement uncertainty R(t).

IV. PROPOSED METHOD

In this section, for the time-varying covariance (P) of the
setpoint g, firstly, a mapping to the AAA factor α (see Def. 1)
is proposed. Secondly all the constituents are merged to
formulate the proposed shared control framework. Thirdly,
stability of the shared control framework is established.

A. Proposed Mapping between α(t) and P(t)

An adaptive Bayesian filter is with the purpose to map
its uncertainty measure to the time-varying gain, β , to
scale down the ACS forces (in the case of measurement
degradation) and to transfer authority to the human operator
who completes the task due to increase in α , see Def. 1. To
this end, the authority of the human operator α , which was
defined earlier in Sec. IV, is derived from the time-varying
covariance P(t) of the adaptive Bayesian filter as:

α(t) =











ξ
(

P(t)
)

−ξ (P)
ξ (P)−ξ (P) if ξ (P)≤ ξ

(

P(t)
)

≤ ξ (P)
0 if ξ

(

P(t)
)

< ξ (P)
1 if ξ

(

P(t)
)

> ξ (P),

(4)

where ξ (•) = log
(

trace(•)
)

. P and P correspond to the
state covariance matrices for good and consistently degraded
measurements respectively, which are a priori identified for
the estimation system in hand as follows. Before beginning
the task execution, the adaptive Bayesian filter is allowed to

converge, which provides a reliable estimate of P, whereas an
upper bound P is obtained by performing the task using ACS
and noting P(t) when it fails due to consistently degraded
measurements.

In summary, when ACS gets degraded measurements, the
value of α increases and the authority is accordingly shifted
to the human operator. This can be clearly seen in the
experiment plots shown in Fig. 6.

As an example, we demonstrate adaptation of R in a
common Bayesian filter, namely, EKF [43] for the system
defined in (3), which is used for experimental validation in
Sec. V. The design adopted from [44], which modeled a
moving {T} therein, can trivially be modified for a static
{T} by using (3) (zero acceleration). In [44, §4.A], the time-
varying nature of R for vision-based systems was highlighted
and addressed using a a residual-based recursive adaptation
technique. In the present paper, however, the adaptation is
performed using a similar method as in [42] that resembles
covariance matching [40] for the kth step as follows:

Rk = η Rk−1 +(1−η) (εk εT
k +Hk P−

k HT
k ),

where η ∈ (0,1) is a forgetting factor and ε ∈ R6 is the
measurement residual obtained after the measurement up-
date. We outline, that by adapting R(t) online in this way, the
state covariance matrix P(t), which depends on R(t), gives
a reliable uncertainty metric of the regulation state g. In
the present paper, without any loss of generality, we use the
covariance matching adaptive EKF for state estimation for
experimental evaluation, although any of the other methods,
including a particle filter [38, ch. 7], may be employed as
well.

B. Proposed Shared Control Architecture

For the teleoperation part of the proposed shared control
framework (see one-DoF representation in Fig. 3), the con-
ventional 4-channel architecture bilateral controller [33] is
used where the positions (Vm,Vs) and measured forces (Fh,Fe)
are exchanged between the master and slave devices. This
approach is represented in the signal flow diagram provided
in Fig. 3 in black. The variables (•)′ are the delayed variants
of the argument arising due to communication delays (Tf

from master to slave and Tb backward). Fcm and Fcs are the
forces produced by the position controllers locally at the
master and slave respectively. C1,C2 and C3 are the gains
for the forces from the local master controller, human and
the environment respectively. The teleoperation system is
ensured to be passive using TDPA according to [34]. For
the sake of brevity, the details of the passivation techniques
are omitted and can be found in [34].

The contribution (denoted in blue and red in Fig. 3)) of
the present paper is the enhancement of the aforementioned
teleoperation system by adding the ACS which is based on
visual tracking to form the shared control system. VT is the
velocity of the target {T} commanded to ACS (0 in this
case). P refers to the state covariance defined in Sec. III and
α,β are defined in Def. 1. As can be seen, the commanded
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Fig. 3: Signal-flow diagram of the proposed shared control framework.

force to the slave, Fs, is the weighted sum of teleoperation
force Ft and ACS force Fa (according to Def. 1).

C. Stability Analysis

The overall shared control system presented in Fig. 3 can
be considered as an interconnection of subsystems, for which
the one-DoF port representation is provided in Fig. 4. In
this section, the stability of the proposed multi-DoF shared
control system with AAA is analysed. Firstly, from Lemma
1, if β = 1, the ACS is uniformly asymptotically stable, and
is passive with (Fa,Vs) as power-correlated variables [45].
When β = 0, the authority is completely allocated the human
operator and the system behaves as a pure teleoperation
controller. As explained in Sec. IV, we use a 4-channel
architecture for the bilateral controller which has been made
passive by using the same TDPA approach as in [34], [35].
For 0 < α,β < 1, the passivity of the system is analyzed
based on the 3-port network represented in Fig. 4. The
human, slave robot and the ACS interact with the system
through the power ports P1 : (Fm,Vm), P2 : (Fs,Vs) and
P3 : (Fa,Vs), respectively. It should be noted that (Fi,Vi) are
the multi-DoF representation of the one-DoF analog provided
in Fig. 4. The passivity of the 3-port network is maintained
by ensuring that the energy flowing out of the system is
never greater than the energy flowing in (see Fig. 4), that is,
∑3

i=1(E
in
i −Eout

i )≥ 0. This is equivalent to:
∫ t

0
(FT

mVm +FT
a Vs +FT

s Vs)dt ≥ 0. (5)

This is the passivity condition for a 3-port network in a
system with zero initial energy [32]. By designing a passivity
observer (PO) and passivity controller (PC) for each port,
as described in [32], we can ensure the passivity of the 3-
port network. In the proposed system, Eobs,i is the observed

Fa

P1 P2

P3

FsFm Ft p

Vm

Vs

VsVs

E in
1

Eout
1

E in
2

Eout
2

E in
3 Eout

3

Human

Master
Telepresence System

Slave

Auto.

AAA

Ctrl.

Envm.

Fig. 4: Port representation of the proposed shared control system with
energy flows.

energy flow in port Pi after applying the PC and is defined
as:

Eobs,i(k) = Eobs,i(k−1)+Fi(k)
T Vi(k)T

+Fpc,i(k−1)T Vpc,i(k−1)T, (6)

where i iterates over the 3 ports, and Fi and Vi are the force
and velocity of the port Pi respectively, corresponding to
the three terms in (5). Note that in contrast to the integral
form provided in (5), an analogous discrete representation
in (6) has been used assuming a fast sampling time T . The
terms Fpc,i and Vpc,i are described now. PC is a time-varying
damper added to the system if the PO observes any activity
in the port (Eobs,i < 0). In the 3-port network here, the total
observed energy is Etot

obs =∑3
i=1 Eobs,i. PC can be applied both

in impedance causality (modifies force if it is the port output)
and in admittance causality (modifies velocity if it is the port
output). In the 3-port network presented in Fig. 4, the output
of the two ports is force (P1,P2), whereas that of the ACS
port (P3) is the slave velocity. For the force output ports, the
PC is a damping element Rpc,i i ∈ [1,2] defined as follows:

Rpc,i(k) =

{

−
Etot

obs(k)
Vi(k)T Vi(k)T

if Etot
obs(k)< 0

0 else.
(7)

The force Fpc,i and velocity Vpc,i in (6) are given by:

Fpc,i(k) = Rpc,i(k)Vi(k), Vpc,i(k) = Vi(k). (8)

For the port P3 where the output is velocity Vs, a PC
with admittance causality is used and the output velocity
is modified. Here, the damping element Rpc,3 is formulated
as:

1
Rpc,3(k)

=

{

−
Etot

obs(k)
Fa(k)T Fa(k)T

if Etot
obs(k)< 0

0 else.
(9)

The force Fpc,3 and velocity Vpc,3 in (6) are given by:

Fpc,3(k) = Fa(k), Vpc,3(k) = Fa(k)/Rpc,3(k). (10)

The 3-port network with the PCs on all ports are shown in
Fig. 5. F ′

m, F ′
s and V ′

s are the modified forces and velocity
of the three ports respectively. It has to be noted that in the
present work, the activity removed by one PC has not been
considered while computing the damping terms for the other
two ports, which will be addressed in future work. In this
way, the 3-port network of the shared control scheme is made
passive. The Slave + Envm port is passive, the ACS port was
proven to be passive [45], and it is widely accepted that the
human and master (although being a source of energy in the
system) is passive. The system represented in Fig. 5, is thus
an interconnection of passive systems and is thus stable [46,
Th. 6.3]

V. EXPERIMENTS AND USER-STUDY

A shared control station was set up to validate the feasi-
bility of the proposed method. A KUKA light-weight-robot
(LWR) master and an LWR slave were employed to complete
two tasks. The first task T1 was to insert the USB male port
(fixed on the slave end-effector) into a USB female port that
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Fig. 5: Port representation of the proposed shared control system with
passivity controllers.

was fixed on the work table. Once T1 was complete (which
was signaled by a green LED bulb on the work-object), the
male USB port had to be ejected. The second task T2 was
to move to the other end of the work table and to insert the
same USB male port at the slave end-effector into the set-up
with a larger insertion point (to simulate a tool changer).
Both tasks, T1 and T2, were executed sequentially with
pure teleoperation (TO) and also with the proposed shared
control (SC). In both cases, a round trip delay of 200ms was
simulated between the master and the slave. The operator
station was composed of the master, a monitor with webcam
views of the work environment of the slave, a graphical
user interface (GUI) to visualize the current AA factor α .
To further assist the operator, a vibro-tactile feedback was
provided whenever the authority (α) crossed the 0.5 value.
In SC, the pose of the USB female port ({T}) was tracked by
a vision-based tracker. The ACS moved the slave robot from
its initial position to T1 target point and the master device
also followed the slave (due to the position coupling of
the 4-channel bilateral controller). As the slave end-effector
approached T1 target point, the view on the tracked target
was occluded by the slave robot itself (see Fig. 1). This
led to the deterioration of measurements from the tracking
system, and resulted in a shift in authority from ACS to the
human operator due to the increase in α , as explained in
Sec. III. The human operator completed the final operation
of inserting the USB male port and then moved towards
T2 target point. As soon as the slave robot moved away
and the occlusion was removed, the vision-based tracker
started providing good measurements and the covariance of
the adaptive EKF reduced and consequently, α . As a result,
the ACS regained control and helped the human operator
approach T2 target point.

In Fig. 6, the top plot represents the desired p̃ =
[

p̃x p̃y p̃z
]T

and actual values ps =
[

psx psy psz
]T

of
the slave tool center point, which shows agreement between
the two, and demonstrates convergence of SC. The second
plot shows the position of the target measured by the vision-
based tracker. For clarity, only p̃x is shown, which high-
lights the measurement degradation between 11s− 27s The
third plot shows the variation in ξ

(

P(t)
)

with measurement
degradation in the same period, which demonstrates the
effectiveness of the adaptive EKF. The fourth plot shows
the consequent variation of α (see (4)) . It can be seen that
when the measurements are degraded, α increases and when
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Fig. 6: Variation in α with variation in measurement noise

the measurements are good after (T1), α decreases. This
validates the adaptive SC approach proposed in the paper.
The records of the tasks being executed, in both pure TO
mode and SC mode are presented in the accompanying video
submission.

A. User study analysis

To verify whether the proposed shared control approach
really assists a human operator in executing tasks that require
high precision (USB insertion), a user study was conducted.
Below, we present the details of the study:

1) Method: T testing sample N = 14 male employees of
DLR with an average age of 27.93 years (SD= 5.6 years,
Range: 22-43 years) participated in the present study after
having signed an informed consent form.

2) Experimental Task: All the participants had to com-
plete T1, and then T2 as mentioned in Sec. V.

3) Experimental Design: A within-subject design was
applied, namely, each subject completed both TO and SC
modes subsequently, with the order of modes counterbal-
anced across the participants. There were two trials with both
modes, resulting in two experimental schemes: 1. TO-SC-
TO-SC; 2. SC-TO-SC-TO.

4) Procedure: After having completed a demographic
questionnaire, the subjects were briefly introduced into the
concepts of TO and SC. The tasks described in Sec. V
were explained to them and a training with duration of 5
minutes was conducted to complete the tasks both in the TO
and SC modes. After the training, the actual experimental
trials started. After completing an experimental tasks, sub-
jects were administered a brief questionnaire with one item
measuring the overall workload (“Please rate your overall
workload during the last task”, adapted from the OWS
scale [47], and one item measuring physical demands (“How
physically demanding was the last task”, adapted from the
NASA-TLX scale [48]. Both items were rated on a 20-point
bipolar scale ranging from “very low” to “very high”. After
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having finished the entire experiment, a final questionnaire
with several items on situation awareness during the SC
mode was filled out by participants ( in the 8-point Likert-
like response format ranging from “does not apply at all” to
“completely applies”).

5) Data Analysis: The repeated measure analysis of vari-
ance (rmANOVA) with Conditions (TO vs. SC) and Trial (1
vs. 2) as within factors was conducted on completion time,
mean forces, mean torques, the workload as well as physical
demand ratings. Descriptive data (mean M and standard
deviation SD) were calculated for the ratings in the final
query.

6) Results: Based on the objective and subjective data an-
alyzed during the study, the following results were obtained:

Completion time: RmANOVA revealed a non-significant
trend for Condition (F(1,13) = 2.9, p = 0.11), namely,
completion times tended to be shorter with SC (M = 64.4s)
compared with TO (M = 77.3s). Furthermore, Trial reached
significance (F(1,13) = 11.1, p < 0.01), indicating a learn-
ing effect from trials 1 to 2.

Mean forces and torques: Regarding mean forces, nei-
ther Control (F(1,13) = 0.03) nor Trial (F(1,13) = 0.14)
reached significance. Yet, a significant Control main effect
was found in rmANOVA on mean torques (F(1,13) =
10.7, p < .01), i.e. the average torques were significantly
lower with SC (M= 0.059) compared to TO (M = 0.072).

Subjective Ratings: RmANOVA yielded a significant Con-
trol (F(1,13) = 11.6, p < 0.01) and Trial main effect
(F(1,13) = 6.57, p < 0.05) on overall workload ratings.
Subjects’ rating were significantly higher during TO (M=
9.43) compared with SC (M = 5.32) and the workload was
indicated to be lower in the 2. trial (trial 1: 8.25, trial 2: 6.50).
Regarding physical demand, only a Control main effect was
evident (F(1,13) = 12.1, p < 0.01), with significantly lower
ratings for SC (M = 4.96; TO: M= 9.04).

Situational awareness: Ratings of the final questionnaire
on situation awareness (SA) during SC indicated that subjects
mainly felt to be aware of the positions and actions of the
robots (M = 6.43; SD =1.16), felt capable of anticipating
robot’s actions (M =6.0; SD =1.75), and were mainly aware
of the degree of control they had (M =6.29; SD =1.94 ).
Moreover, they rated the vibro-tactile feedback as being
helpful to maintain SA (M =6.36; SD =2.13). Only the
ratings whether the GUI was helpful with regard to SA
reached rather moderate approval (M =4.64; SD =1.99).

B. Discussion

The insertion of the USB port using TO with delay
is a task that requires high accuracy in both position,
orientation and force application. The objective evaluation
indicates that the physical effort has been reduced while
implementing the task in the SC mode. The improvement
has been mainly achieved in terms of the amount of torque
input (18% reduction with SC) from the operator since
the ACS already places the end-effector USB port in the
right orientation before the human operator gets control. He
needs to complete only the final insertion, which is not the

case in pure teleoperation where he has to execute the task
from beginning. The subjective evaluation shows significant
reduction in the physical (45.13%) and overall workload
(43.58%) of the participants during the task execution. This
can be explained by the fact that in SC mode the participant
was relieved of most of the work and had to intervene only
when the autonomous system could not complete the task.
Overall, despite the short training time, the results indicate a
reduction in the completion time (16.7%), torque input from
the participant and workload, both physical and overall, with
the SC approach.

Lessons learned: In terms of situational awareness, the
user study indicates that the multi-modal feedback provided
to the participants (kinesthetic and vibro-tactile feedback
from the master device and the visual feedback of the slave
environment and α value in the GUI) was overall helpful
for the participants. However, 2 out of the 14 participants
reported that the amount of information was excessive, which
increased their cognitive load (specifically, monitoring the
GUI while observing the webcam views and inserting the
USB plugs). A better method, possibly a head mounted dis-
play which gives a single, 3D view of the work environment
and that is augmented with the α value, has to be developed.

Although it was generally reported by the participants
and was verified in the subjective and objective analysis
that the SC scheme reduced the overall workload of the
operators, 3 out of 14 participants mentioned that an option
for human intervention was missing and they could not
override the ACS commanded slave motion. This can be
seen as a limitation of the proposed system-driven adaptation
method.

VI. CONCLUSION

In the present paper, a shared control system with adaptive
authority allocation was proposed. Unlike in the previous
related works, the AA mechanism proposed in this paper
was not fixed a priori. The adaptation was established based
on a metric derived from an adaptive EKF’s state covariance
which depended on the real sensor measurements. This al-
lowed the ACS to execute the tasks and yield control author-
ity to the operator only when the measurements degraded.
A subjective evaluation based on a user-study indicated
the benefits of the proposed approach, which relieved the
operator of significant amount of workload. It has to be
noted that in this work, only the occlusion scenario for Vicon
trackers was presented to introduce the concept. This method
can be applied in other tracking systems like cameras and
lidars, and can be used to address other practical issues like
camera noise (due to close-range and large-angle targets),
image losses and changes in lighting conditions (shadows,
specularities etc). The application of the proposed method to
these scenarios will be investigated in future research work.
Other future research plans include extending the work to
moving targets, enabling human intervention and optimizing
the passivity criteria for better performance.
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