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Abstract— This paper presents a novel vehicle motion fore-
casting method based on multi-head attention. It produces
joint forecasts for all vehicles on a road scene as sequences
of multi-modal probability density functions of their positions.
Its architecture uses multi-head attention to account for in-
teractions between all vehicles, and long short-term memory
layers for encoding and forecasting. It relies solely on vehicle
position tracks, does not need maneuver definitions, and does
not rasterize the scene as a spatial grid. This allows it to be more
versatile than similar model while combining many forecasting
capabilities, namely joint forecast with interactions, uncertainty
estimation, and multi-modality. The resulting prediction likeli-
hood outperforms state-of-the-art models on the same dataset.

I. INTRODUCTION

Automation of driving tasks aims for safety and com-
fort improvements. For that purpose, Autonomous Driving
(AD) systems rely on the anticipation of the traffic scene
movements. Consequently, motion forecasting is used in AD
algorithms such as path planning and target selection. The
main obstacle in this task is the human driver behavior
that can neither be modeled nor predicted perfectly. It is
especially challenging in negotiating situations with many
participants where drivers’ interactivity plays a determinant
role. A technical challenge is to find a representation of the
road scene that allows forecasting algorithms to account for
interactions within a variable number of observed vehicles.
It should do so with an unevenly distributed observation
accuracy on a wide partially occluded surrounding area.
Occlusions and uneven accuracy do not affect the closely
related topic of pedestrian motion forecasting where, in most
applications, the observations are not embedded in the scene.
Two other aspects are specific to vehicles and should be
considered: the importance of the road network structure
and of the reaction time due to inertia. This requires the
understanding of the road network structure and longer time
and distance anticipation.

The unknown driver’s decisions and the perception inac-
curacies make forecasting uncertainties unavoidable. In that
context, another objective is to control the uncertainties of the
motion forecasts. The scene uncertainties are characterized
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3 École polytechnique, Route de Saclay, 91128 Palaiseau
Thomas.Gilles@polytechnique.edu

with a probability density function that presents modes
with dispersion. Modes are local maxima of the Probability
Density Function (PDF) of future positions. They stand for
occurrences of choices, for example, a driver chooses a lane,
or the perception system chooses a classification. Dispersions
around each mode represent the continuous uncertainties.
They are small errors made at each step of the process such
as perception, estimation, and some model approximations.
When considering multiple modes, there is a challenging
trade-off to find between anticipating a wide diversity of
modes and focusing on realistic ones. To meet the need
for anticipation in AD systems, forecasting algorithms must
control the two kinds of uncertainties within an interaction
aware framework.

II. RELATED WORK

Learned models for trajectory and maneuver forecast are
compared in the survey [1]. Since then, recurrent neural
networks mostly using the Long Short-Term Memory [2]
(LSTM) architecture have become the standard technology
for statistical trajectory forecasting. It has been used with
the same kind of hand-crafted interaction features than
traditional models such as social force [3] but it failed to
generalize to complex situations. This was overcome with
the social pooling mechanism in [4] by using a spatial grid
representation. It places features computed with LSTMs on
a coarse spatial grid to allow spatially related sequences to
share features. The subsequent work [5], used as a baseline in
our application, uses convolutional social pooling on a coarse
spatial grid. Spatial grids are representation spaces that are
able to account for a variable number of input vehicles
without ordering. An extension of the convolutional social
pooling made in [6] uses non-local multi-head attention over
spatial grids to account for long distance interdependencies.
Spatial grid representations limit the zone of interest to
a predefined fixed size and the spatial relation precision
to the grid cell size. To allow direct interactions without
spatial grids, in [7], a feature-wise max-pooling of relative
positions encoding similar to the PointNet [8] architecture is
used. However, the social context treats all the other agents
uniformly whereas each agent should interact with a selection
of relevant other agents.

Social attention is a mechanism that allows selective
interactions within relevant agents. It is used to make the
social context more specific. In [9] a different context vector
is built for each agent. Other agent features are sorted
according to their relative distance to the target agent in
a list. This list has a fixed size of Nmax agents and is

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 9638



sensitive to small variations of other agent positions. A soft
attention mechanism is used on this list to produce a context
feature vector. To avoid the list ordering sensitivity, [10] uses
hand crafted relative geometric features to build a set of
normalized weights. The context vector is a convex sum of
other agent’s feature vectors that is invariant to the ordering.
These last three solutions are used within a Generative
Aderserial Network (GAN) architecture. Generative models
such as GANs and Variational Auto-Encoders (VAE) are
able to describe complex distributions. However, they are
only able to generate an output distribution with sampling
and do not express a PDF. More complex interactions
than simple distances and angles should be produced in
the context of vehicle forecasting to account for specific
behaviors such as following or yielding. This is made using a
graph representation of vehicles neighbors in [11]. However
it only accounts for local interactions among vehicles within
a hand-defined distance threshold. A dot product attention
mechanism is produced in [12]. It is inspired from the
attention mechanism first developed in [13] for sentence
translation. This mechanism allows joint forecast of every
vehicle in the observed scenes without spatial limitations. It
accounts for long range interactions within a varying number
of vehicles and does not require the ordering of the vehicle
tracks it takes as input. In [12], this dot product attention
is used within a spatio-temporal graph representation of the
scene developed in [14]. This representation combines spatial
and temporal dependencies that rely on positions, pedestrian
relative positions, and time step movements as features. Each
are embedded with LSTMs before using the dot product
attention for social interactions. This identifies important
relations between neighbors to be considered for interactions
and combines the pedestrian feature representation with the
feature representation of the relations. In this work we use
the multi-head extension of this attention mechanism, also
from [13], with a different road scene representation. We
do not rely on spatio-temporal graphs but on a simple tem-
poral embedding followed by social interactions that allows
interactions between more complex feature representations
than only temporal and relative dynamics. We show in the
application (section VII) that different heads specialize to
different and interpretable interaction patterns. Our network
outputs a mixture of bivariate Gaussian laws that is more
adequate to describe the expected distribution than the simple
bivariate Gaussian law from [12] and we show that it
produces diversified multi-modal forecasts.

Multi-modal forecasts are expressed as predictions with
local probability maxima. Mixture Density Networks defined
in [15] are used in [5] that predefines driving maneuvers
as prediction modes. Each maneuver mode is matched with
one Gaussian component of the mixture and a conditional
predictor is trained along with a maneuver classifier. As
shown in [16], the various modes in the trajectory data are
very complex and numerous. Thus, capturing them with a
few predefined maneuvers is not enough. Using Gaussian
mixture does not necessarily produce diversified modes. A
solution to obtain distinct predicted modes without pre-

defining them is proposed in [17]. However, it changes the
optimized objective that no longer maximizes the forecast
likelihood. In [18] another solution that preserves the forecast
statistics while producing diversified predictions is proposed.
However, both methods rely on VAEs that generate predic-
tion samples but not the PDF. In [19], a Multiple-Trajectory
Prediction (MTP) loss is used to produce multimodal trajec-
tory predictions without the need for sampling. However, as
in [17], this modifies the objective function and alters the
forecast likelihood.
To the best of our knowledge, our added contributions are:

• The use of multi-head attention for motion forecasting
leading to specialized interactions.

• The combination of long range attention with joint and
multi-modal forecasts.

• The unsupervised obtention of diversified multi-modal
predictions by directly maximizing the forecast likeli-
hood leading to improved likelihood of the results.

III. INPUTS AND OUTPUTS

The inputs are sequences of all vehicle (x, y) positions
in a road scene. At each time t0, we consider an observation
history with a fixed observation frequency and a fixed
number of observations nhist. The past trajectory is written
{(x, y)k}k=−nhist+1,0. The coordinate system is centered on
the ego vehicle position at t0.

The outputs are npred sequences of Gaussians mix-
tures for each vehicle. They are expressed with sextuplets
(x̂, ŷ, σx, σy, ρ, p) for each vehicle, at each forecast step
and for each mixture component. It defines a Gaussian
component (N ((x̂, ŷ),Σ), p) with

Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
the covariance matrix, and p the mixture weight such that
for nmix components,

∑nmix

m=1 pm = 1.
The forecasting model is a set of functions predθ :

inputs→ outputs. The inputs and outputs sets are defined
with the cartesian products:

inputs ∈
(
R2
)nhist×nveh

outputs ∈
((

R2︸︷︷︸
x̂,ŷ

× R2
+︸︷︷︸

σx,σy

× [−1, 1]︸ ︷︷ ︸
ρ

)nmix

×∆nmix︸ ︷︷ ︸
p

)npred×nveh

∆nmix is the nmix element simplex:

∆nmix =
{

(p1, . . . , pnmix) ∈ Rnmix

∣∣∣ nmix∑
i=1

pi = 1, pi ≥ 0 ∀i
}

The predθ function set is defined as a neural network with
weights θ. predθ is equi-variant with permutations along the
vehicle axis and it is defined for any numbers of vehicles
nveh and forecast steps npred.

9639



IV. MODEL ARCHITECTURE

This model uses an encoder-decoder structure. It is based
on LSTM networks for encoding and forecasting. We pro-
pose to add two multi-head self-attention layers to this archi-
tecture to account for interactions. The first attention layer is
added after encoding to incorporate current time interactions.
The second attention layer is added after forecasting time
unrolling. This allows the forecast position sequences to
remain coherent with each other.

A. Global architecture
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Fig. 1: Block representation of our forecasting model. In-
puts are the sequence of past observations of each vehicle.
Outputs are the Gaussian mixture forecasts.

The figure 1 breaks the model in four parts: Encoder, Self-
Attention, Predictor, and Decoder. The two self-attention lay-
ers have similar architectures with different weights whereas
the encoder, predictor, and decoder use shared weights.

B. Encoder

The encoder acts as a current state estimation for each
vehicle using the past observation sequences. This state is
an intermediary vector of the neural network and is difficult
to interpret. However, since it should encode the current state
with at least the information of position, kinematic state, and
interaction features, it should have a sufficient dimension, we
chose 120. The input (x, y) position sequences are fed to a
one dimensional convolutional layer with a kernel of size
3 sliding over the time dimension that creates sequences of
120 features for each vehicle. This first layer increases the
number of features in the vector used for the following com-
putations. A convolution allows this first layer to compute
derivatives, smoothed values and other features extracted
from successive positions. Then each feature sequence is
encoded with a Long Short-Term Memory (LSTM) [2] into
a vector of 120 features for each vehicle.

C. Self-attention

The multi-head self-attention layers allow vehicle inter-
actions while keeping independence from their number and
ordering. This mechanism is described in [13] where it is
applied on sentence translation. In this section we explain
its use for vehicle interactions. The computations made by
each attention head is represented on figure 2.

Each vehicle should pay attention to specific features from
a selection of the other vehicles. This is made with four steps:
pulling a subset of specific features, identifying these feature
collections, enquiring among identifiers, and gathering the
results. Each head produces a different selection of features
using a linear projection of the input tensor resulting in the
value tensor V . To identify these features, a key tensor K
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Fig. 2: Schematic representation of one attention head com-
putations. Blocks Lq , Lv , Lk are matrix multiplications of
the input vectors.

is associated to each value. Then, each vehicle must select
which other vehicle to pay attention to. For that purpose, a
query Q is produced to find a selection of keys. The match
score between a key and a query is their dot product, it is
scaled with the square root of the key dimension

√
dk and

normalized with a softmax. This produces an attention matrix
that contains coefficients close to 1 for matching queries and
keys and close to 0 otherwise. The attention matrix is square
of size nveh, each coefficient (i, j) is the attention coefficient
of vehicle i on vehicle j. Finally, this matrix is used to
weight the sum of values from V . Thus, the self-attention
computation for each head is written:

output = Softmax
dim=last

(
QKT

√
dk

)
︸ ︷︷ ︸

attention matrix

V (1)

The outputs from all heads are concatenated and combined
with a linear layer. The resulting tensor is then added to the
input as in residual networks.

D. Predictor and decoder

Tensors produced with the self-attention layer are repeated
npred times to be fed as time sequences into a second
LSTM layer called predictor. This produces intermediary
time sequences with some interaction awareness. Within the
feature sequences, vehicle interactions may depend on time.
Thus, we placed a second multi-head self-attention layer
before feeding the output to the decoder.

Feature sequences are decoded with two linear layers
shared for each time step and ReLU activations. Finally, a last
linear layer produces the mixture of Gaussian coefficients.
The output is described in section III. Let oi be the ith

coordinate of the output tensor before the activation function.
To constraint it, the following activation function is applied
on each coordinate at every time steps:

{(x̂, ŷ, σx, σy, ρ, p)}m=1,nmix

= activation({o1, o2, o3, o4, o5, o6}m=1,nmix)

=
{

(o1, o2, e
o3
2 , e

o4
2 , tanh(o5),Softmax

m∈mix
(o6))

}
m=1,nmix
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V. ARCHITECTURE DISCUSSION

A. Multi-head self-attention

The general idea of this architecture is to use the good
properties of the key-query self-attention layer to account
for interactions. This offers flexibility to the model allowing
powerful LSTM models to compute the features and predic-
tions with the fixed size inputs it demands while accepting
a varying number of interacting vehicles without ordering.
This allows the simultaneous forecast of each vehicle in the
scene with vehicle to vehicle interactions. We show in the
application section VII-B that multi-head attention produces
interpretable interactions with heads specializing on different
interaction patterns.

This method could be stated as computationally expensive
because with the attention over nveh objects, the overall
complexity is O(nprednvehd(d + nveh). However, in our use
cases, the number of objects is lower than nveh = 30 and
most of the time it remains around 10 which is much lower
than the feature dimension d = 120.

B. Maneuver free multimodal forecast

The nmix (arbitrary choice) mixture components are di-
versified solely by the loss minimization. The loss is only
the negative log-likelihood (NLL) value averaged over time.
Thus, minimizing it pushes the predicted modes toward those
of the data distribution. What is forecast is not a mixture
of trajectory density functions but a sequence of position
mixture density functions. There is a dependency between
forecasts at time tk and at time tk+1 but no explicit link
between the modes at those times. To simplify, we assume
that mixture components centers define local maxima of
the probability distributions and can be tracked in time by
matching similar mixture coefficient values. They are used as
forecast trajectories. Even if the human reasoning and some
performance indicators use trajectories, only position PDFs
at each time steps are needed for the applications such as
path planning and safety assessment.

C. Hyperparameters

This model is defined with a few specific hyperparameters
that should be tuned: number of encoded features, number
of embedding and decoding layers and their activation func-
tions, number of heads in each self-attention layer, number
of mixture component in the output distribution and the error
covariance clipping value. Other choices have been made and
should be questioned such as the data normalization, the use
of shortcut connections with or without layer normalization,
the use of LSTM layers, the use of two attention layers
and some implicit choices that may have been overlooked.
Optimizing the hyperparameters with a thorough process
could bring some improvements and help understand the
model but is not a part of the present study. In this work, only
the general concept was prioritized and the hyperparameters
were chosen from experience.

The second self-attention layer might not be strictly nec-
essary in our architecture. However, when it is taken out, the

training of the model becomes unstable. This will be studied
in more details in a future work.

VI. LOSS AND PERFORMANCE INDICATORS

The model is trained with the Adam optimizer [20] that
minimizes the NLL loss. The usual performance indicators
for such forecasting models are root mean squared error
(RMSE), final displacement error (FDE), and NLL. Only
the NLL accounts for the multi-modal aspect of the forecast,
other indicators are merely computed with the most probable
trajectory. None of the usual performance indicator is able to
judge the trade-off between forecast accuracy and diversity of
the predicted modes. Thus no indicator is entirely satisfactory
and we also consider the Miss Rate (MR).

In the following equations, for the ith sequence at time
tk, we note (xik, y

i
k) the observed positions, (x̂ik, ŷ

i
k) the

most probable forecast positions, and (x̂∗ik , ŷ
∗i
k ) the forecast

positions that produces the minimum FDE. N is the number
of sequences in the subset of the database on which the
computation is made.
The RMSE computation is made with equation (2) with

RMSE(k) =

√√√√ 1

N

N∑
i=1

(xik − x̂ik)2 + (yik − ŷik)2 (2)

The FDE values are less sensitive to large errors than RMSE.
Its computation is made with equations (3).

FDE(k) =
1

N

N∑
i=1

√
(xik − x̂ik)2 + (yik − ŷik)2 (3)

The Miss Rate is the rate with which all proposed forecasts
miss the final position by more than 2m.

MR(k) =
1

N

N∑
i=1

1√
(xi

k−x̂
∗i
k )2+(yik−ŷ

∗i
k )2>2

(4)

The miss rate is lowered with the addition of relevant
components and gives an indication about the trade-off
between accuracy and diversity. The 2m threshold is not met
if maneuvers such as lane changes are missed by all modes.
The NLL computation, at each forecast time tk, for each
Gaussian component centered on (x̂, ŷ), with the forecast
error d = (dx, dy) = (x − x̂, y − ŷ) and the forecast error
covariance defined with (σx, σy, ρ) is written:

NLL(dx, dy,Σ) =
1

2

1

(1− ρ2)

(
d2
x

σ2
x

+
d2
y

σ2
y

− 2ρ
dxdy
σxσy

)
︸ ︷︷ ︸

dk
T Σ−1

k dk

+ ln

(
2π σxσy

√
1− ρ2︸ ︷︷ ︸√
|Σk|

) (5)

The time index k is dropped to improve readability. The com-
putation of the overall NLL value for all mixture components
is written:

NLL(dx, dy,Σ, p) = − ln

(
nmix∑
m=1

pme
−NLL(dxm ,dym ,Σm)

)
(6)
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TABLE I: Comparison of MNLL, RMSE, FDE and MR
results with baselines using the same dataset. *CSP(M)
results were recomputed with some minor modifications for
a fair comparison.

Time horizon 1s 2s 3s 4s 5s

MNLL
CV [22] 0.82 2.32 3.23 3.91 4.46
CSP(M) [5]* -0.41 1.07 1.93 2.55 3.08
SAMMP -0.36 0.70 1.51 2.13 2.64

RMSE
CV [22] 0.76 1.82 3.17 4.80 6.70
CSP(M) [5]* 0.59 1.27 2.13 3.22 4.64
GRIP [11] 0.37 0.86 1.45 2.21 3.16
SAMMP 0.51 1.13 1.88 2.81 3.98

FDE CV [22] 0.46 1.24 2.27 3.53 4.99
CSP(M) [5]* 0.39 0.91 1.55 2.36 3.39
SAMMP 0.31 0.78 1.35 2.04 2.90

MR CV [22] 0.02 0.20 0.44 0.61 0.71
CSP(M) [5]* 0.004 0.03 0.12 0.28 0.44
SAMMP 0.002 0.02 0.08 0.15 0.23

The mean NLL (MNLL) is the average of the NLL from
equation (6) over the test set. Minimizing the NLL loss max-
imizes the likelihood of the data for the forecast. However,
it tends to overfit part of its output. In [21], NLL overfitting
has degraded the results, making the NLL value unreliable
as a performance indicator. To avoid this problem, we clip
the standard deviations with a 10cm minimum value.

VII. APPLICATION

This model was implemented using the Pytorch library.
The NGSIM datasets US-101 and I-80 and its pre-processing
were taken from the published code accompanying the arti-
cle [5]. This also defines the dataset splitting into training,
validation, and test sets. Thus, a fair comparison with these
results is made. The dataset contains the tracks of all vehicle
position on a road segment observed from a camera. The pre-
processing produces data that simulates observations from a
given vehicle. Each vehicle is alternatively chosen as the
observing vehicle. Its neighbors in adjacent lanes and within
a 60m road segment are recorded to produce a local road
scene centered on the observing vehicle. This road scene is
tracked to produce 8 seconds sequences with all positions
being recorded at a 5Hz frequency. The 3 first seconds are
used as past observations and the 5 next seconds are used as
forecast supervision. A typical training time for our model
is 20 to 30 hours.

A. Performance indicators comparison

Table I reports results using the performance indicators
defined in section VI. All the compared models except for
GRIP [11] were trained and computed on the same dataset
and evaluated with the same functions. Since CSP(M) only
forecasts the observing vehicle trajectory, only the errors for
this vehicle are being compared.

Baselines:
Constant velocity (CV): We used a constant velocity

Kalman filter with optimized parameters for forecasting on
the same data as described in [22].

Convolutional Social Pooling (CSP(M)): We retrained the
model from [5]. It uses a maneuver classifier trained with
preprocessed data that conditions a predictor for multimodal

forecasts. A forecast of the center vehicle trajectory is
made with information from its social environment using the
convolutional social pooling mechanism. In [5], the model
CSP with unimodal forecast gives better RMSE results than
the multi-modal forecast CSP(M).

Graph-based Interaction-aware Trajectory Prediction
(GRIP): We took the published results from [11]. It uses
a spatial and temporal graph representation of the scene to
make a maximum likelihood trajectory prediction simulta-
neously for all vehicles in the scene. It produces the best
RMSE results but it does not account for forecasting error
covariance estimation nor multimodality.

Social Attention Multi-Modal Prediction (SAMMP): The
model described in this article. We chose six mixture com-
ponents to match the CSP(M) model for a fair comparison.

The results from table I show that our model produces a
better forecast likelihood than the other models. The lower
miss rate shows that the mixture components learned with
our model are more relevant than the maneuver definition
made in the CSP(M) model and that the forecasts are well
diversified. Our RMSE results does not improve upon the
results from the GRIP model when we consider the most
probable trajectory. However, the most probable trajectory
is not always the closest one from the ground truth. The
RMSE of the best matching trajectory among the six output
trajectories from our model (found using the ground truth)
are much lower (respectively 0.31 0.71 1.20 1.80 2.55). Thus,
the comparison with the results from GRIP are unclear be-
cause its lower RMSE could be caused by mode averaging on
their part or by an imperfect mixture probability coefficient
evaluation on our part. This could be answered by comparing
the miss rates from GRIP with the miss rate of the most
probable trajectory from our model.

B. Attention interpretation

The attention matrices give insights about the importance
of some interactions. Some of the head roles can be ratio-
nalized by looking at the attention matrix it produces in
different contexts. For example, after most tested trainings
of the model, one of the heads is strongly specialized in
front vehicle attention such as the one in figure 3a. The main
attention link always goes from one vehicle to the vehicle
in front of it, or to itself if there is no front vehicle. In a
few cases, no head is specialized in front vehicle attention,
however, one head is specialized in rear vehicle attention.
Most of the experiments produced another head matching
more or less strongly the closest front vehicle in any lane,
such as the one on figure 3b. Other heads also specialize but
the interpretation is less clear because the attention is spread
over many vehicles. There is often a distinction between front
and rear attention and a distinction of lanes.

C. Multi-modal forecasting

On the figure 4, the vehicle 0 aggressively overtakes
the vehicle 3. In this situation, the future holds various
possibilities. The overtake could be aborted or be made
less aggressively, also the last observations of acceleration
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(b) Head mainly specialized in closest vehicle attention

Fig. 3: A driving scene top view representation with all observed vehicles with their past positions in gray and the attention
matrix for two heads of the first attention layer. The attention that vehicle i is giving to j is drawn as an arrow from i to
j, and a circle when i = j with widths proportional to the attention coefficient and a color varying with the arrow angle.
Attention is also visible as color from purple to yellow in the i, j coefficient of the matrices on the left.
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Fig. 4: Another driving scene top view representation. Super-
posed forecasts are represented in blue shades in log scale.
Actual future positions are represented with a green line.

and turning could be the results of perception errors. This
example has been chosen because it shows multiple lateral
modes that are easier to visualize than the more common
longitudinal modes. The NLL loss training is enough to
produce a multimodal output matching those possibilities.
Using an unmodified NLL loss prevents biases in the forecast
distribution that a different loss function may cause and it
indeed leads to lower NLL values.

VIII. HOW TO EXTEND THIS?

The simplest extension is to add observations on each
vehicle such as velocity, orientation, size or blinkers. Another
extension is to match various object classes such as cars and
trucks with specific encoders, predictors, and decoders to
allow inter-class interactions. These adaptations can easily
be made because our forecasting algorithm is model-free.

Our application and the one from [5] both work with
NGSIM US-101 and I-80 datasets. They are composed of
highway straight roads observed from above with a camera.
This simplistic configuration does not allow training nor
testing of the road network understanding. However, this is
an important challenge that our model could consider. In
the present architecture, self-attention produces keys, queries,
and values from the same input to transform the input
value. It is possible to produce an asymmetric attention
mechanism to consider additional inputs, such as lane center
lines discretized as a sequences of reference points. The
keys and values can be produced for the additional input

with equation 7 whereas the query, as before, relates to the
vehicles. encodedext = extEncoder(inputext)

Vext = Lvext(encodedext)

Kext = Lkext(encodedext)

Qveh = Lq(Vehicles)

(7)

The attention is then computed as follow:

output = Softmax
dim=last

(
QvehK

T
ext√

dk

)
Vext (8)

The output is a weighted sum of the additional features with
specific weights for each vehicle. Adding this to the vehicle
feature vectors before the vehicle to vehicle attention layer
would allow additional context awareness.

To improve the tracking of trajectories from our output,
the trajectories should be defined as the optimal transport
path between the Gaussian mixtures in time. A variable finite
number of trajectories would be produced as the optimal
transport paths that pass through local maxima.

IX. CONCLUSIONS
We proposed a road scene forecasting model that produces

multimodal probability density functions to jointly forecast
all vehicles trajectories of the road scene. Our method
generates interpretable social attention coefficients that will
be extended to other road scene observations. Results from
our approach have outperformed state-of-the-art results with
the NLL indicator. This shows a good forecasting capacity as
well as a good uncertainty evaluation leading to a preferred
trade-off between accuracy and prediction diversity. Future
work will include attention of vehicles to lanes and be based
on the recently published Argoverse [23] dataset in urban
situations. We expect the urban conditions to cover complex
cases and highly interactive scenes that are better suited to
show the interactive capacity of the proposed solution.
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