
A Tightly Coupled VLC-Inertial Localization System by EKF

Qing Liang and Ming Liu

Abstract— Lightweight global localization is favorable by
many resource-constrained platforms working in GPS-denied
indoor environments, such as service robots and mobile devices.
In recent years, visible light communication (VLC) has emerged
as a promising technology that can support global positioning in
buildings by reusing the widespread LED luminaries as artificial
visual landmarks. In this paper, we propose a novel VLC/IMU
integrated system with a tightly coupled formulation by an
extended-Kalman filter (EKF) for robust VLC-inertial local-
ization. By tightly fusing the inertial measurements with the
visual measurements of LED fiducials, our EKF localizer can
provide lightweight real-time accurate global pose estimates,
even in LED-shortage situations. We further complete it with a
2-point global pose initialization method that loosely couples the
two sensor measurements. We can hence bootstrap our system
with two or more LED features observed in one camera frame.
The proposed system and method are verified by extensive field
experiments using dozens of self-made LED prototypes.

I. INTRODUCTION

Localization is essential for many robot tasks like planning

and navigation, as well as for a wide range of location-

based services. We are interested in global solutions in GPS-

denied indoor environments. State-of-the-art Lidar odometry

and mapping systems [1], [2] can provide consistent low-

drift pose estimates using multi-scan Lidar sensors. However,

they are computationally intensive for resource-constrained

platforms, such as service robots and mobile devices. We aim

to reach a lightweight solution that is accurate, consistent,

reliable and more easily affordable with inexpensive sensors.

In recent years, localization based on visible light commu-

nication (VLC) [3] has emerged as a competitive lightweight

solution to be deployed at scale in modern buildings. Besides

illumination, LED lights can be reused as artificial landmarks

for positioning. The modulated LED broadcasts its unique

identity by VLC, which can later be recognized by a rolling-

shutter camera. The lights can be mapped once for all, as they

are normally fixed and not easily vulnerable to environmental

changes. Hence, we are solving a localization problem with

known data associations via VLC and a priori map. We can

obtain camera poses by solving a perspective-n-point (PnP)

problem, given more than three LED features observed in one

camera frame. Yet we find that such a requirement is usually

demanding, if not impossible, to meet in real situations.
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Note that each square-shaped fiducial (e.g., AprilTag [4])

provides four distinctive corner features, which are sufficient

to determine a camera pose. By contrast, normal LED lights

offer less usable point features in each due to the lack of

distinguishable appearance, e.g., one feature for a circular

LED. The number of LEDs decodable in a camera view is

limited by a couple of practical factors, such as the density

of lights, ceiling height, camera field-of-view (FoV) and

the effective VLC range supported by chosen hardware. It

would deteriorate further with line-of-sight obstruction by

surroundings. Therefore, vision-only methods like PnP may

suffer the shortage of decodable LEDs in reality. We can

relax this problem by a more careful LED arrangement,

e.g., using special LEDs of distinguishable appearance or

increasing the density of lights. Yet, it may also raise the

associated cost during system deployment.
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Fig. 1: Overview of the proposed VLC-inertial localization system.

In this work, we aim to overcome the challenge of LED

shortage more economically. We are motivated to relax the

requirement on the number of LED observations for VLC

localization by fusing inertial measurements for improved

robustness. Hence, we propose a novel VLC/IMU integrated

system with a tightly-coupled formulation by an extended

Kalman filter (EKF). We follow the standard EKF-based

framework for localization. Especially, our approach exploits

visual measurements of VLC-enabled LED luminaries for

visual-inertial fusion in a tightly-coupled manner. Moreover,

we expect our system to work properly with low-end visual-

inertial sensors (e.g., a rolling-shutter camera and an inex-

pensive IMU) that can be found on low-cost service robots or

smartphones. Yet for these sensors, hardware synchronization

is not readily available. As such, there may exist a time offset

between two sensor streams, e.g., due to different triggering

and transmission delays [5], [6]. It may vary slowly further

due to clock drift in long-term operation. To solve this

problem, we turn to online temporal calibration by following

the standard approach proposed by [5], which also adopts an

EKF-based formulation for visual-inertial pose estimation.

As shown in Fig. 1, a VLC frontend first extracts LED

features with known data associations from a built map by

LED detection and VLC decoding. EKF then corrects the
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propagated IMU states using such absolute measurements

and ensures globally consistent pose estimates free of drift.

To initialize the filter’s global pose, we introduce a 2-point

method based on an IMU-aided P2P solution in [7]. By doing

so, our EKF localizer can safely bootstrap from at least

two LED features in one camera view, and enable failure

recovery in extreme cases of long-term LED outage. The

main contributions are summarized as follows:

• A novel VLC/IMU integrated system with a tightly-

coupled EKF formulation is proposed for robust VLC-

inertial localization in LED-shortage situations.

• A 2-point global pose initialization method is integrated

to aid system bootstrapping and failure recovery.

• The system and method are verified by extensive field

experiments using a prototype VLC network.

The remainder of this paper is organized as follows.

Section II introduces the related works. Section III and Sec-

tion IV explain our VLC frontend and EKF-based localizer,

respectively. Section V presents the experimental results.

Section VI concludes this paper.

II. RELATED WORKS

A. VLC-based Localization

VLC-based systems [8]–[12] employ modulated LEDs of

known locations as landmarks, measure bearings or ranges

of visible LEDs with cameras or photodiodes, associate each

measurement as per the decoded LED identity by VLC, and

solve the location using the measured constraints. Geometry-

based methods (e.g., triangulation) need at least three LED

features to fix a 3D pose. This is a major cause of their fragile

performance in real situations with insufficient visible LEDs.

Several methods were proposed to relax this issue by fusing

IMU measurements. Epsilon [11] employed an IMU and a

digital compass to measure the photodiode’s 3D orientation

w.r.t. the geomagnetic north. By tedious user intervention, it

managed to fix locations in meter-level accuracy using one

LED, yet not in real-time. Epsilon may suffer large compass

errors due to magnetic anomalies. Lookup [10] solved the

camera’s 2D position using two LEDs by measuring its roll

and pitch angles with an accelerometer, as well as assuming

knowledge of the camera’s altitude. Further, by knowing the

camera’s yaw angle from a digital compass, it was able to

handle the case of one visible LED for 2D localization. Some

larger errors were reported, e.g., due to incorrect orientation

measurements of the compass. In this work, we are interested

in solving the real-time 3D pose of a free-moving camera in

LED shortage or outage scenarios with the aid of an IMU

(i.e., not using a compass) by tightly-coupled fusion.

B. Pose Estimation with Fiducial Markers

The paper printable squared fiducials [4], [13] are popular

artificial visual landmarks for lightweight pose estimation in

robot applications. Similar to modulated LEDs, the fiducial

maker can be uniquely identified by its encoded code patterns

from a camera image. Yet, each marker can provide four

distinctive corner features. By integrating inertial measure-

ments, in either a loosely- or tightly-coupled manner, some

methods [14]–[16] can provide very accurate and robust

pose estimates with fiducials. They have a trivial solution

to the pose initialization problem, as it is sufficient to

determine the camera pose from a single observation of

known fiducials. By contrast, it is more technically difficult

to obtain an initial pose guess for our system, especially

under the LED-shortage condition. We note that fiducial-

based systems are suitable for specialized robot workspaces

where the environmental appearance is of no concern, such

as warehouses, factories, and laboratories. However, fiducials

may look unappealing or even weird in daily environments,

such as shopping malls and museums. As an alternative, our

LED-based system can be naturally compatible with most

daily scenarios, as well as some specialized workspaces.

III. VLC WITH A ROLLING-SHUTTER CAMERA

The time-varying light signals from LEDs are perceived

by the rolling-shutter camera as spatially-varying strips. We

intend to retrieve VLC messages from such barcode-like strip

patterns. To do so, we first extract candidate regions from the

image that may possibly contain LEDs. For each of them, we

try to decode its unique identity (ID) and find its normalized

centroid pixel as feature measurements. We can then obtain

its absolute 3D position from a prebuilt LED feature map.

A. VLC Preliminaries

We consider a rolling-shutter camera with row exposure

time τe and row read-out time τr. The effective sampling

rate, also known as the rolling-shutter frequency [17], is fs =
1/τr. We assume that the LED transmitter can switch on and

off under the control of binary signals. We use an on-off-

keying (OOK) modulation scheme with Manchester coding

for data packaging. The OOK modulation frequency is fm =
1/τm with τm as the sampling interval. That is, τm is the

minimum pulse duration in the modulated binary signals.

The upper bound of the square wave fundamental frequency

is fh = fm/2. To recover the signals, the Nyquist sampling

theorem must apply1, i.e., fh < fs/2 and hence fm < fs.

The modulated pulses are captured by the camera as bright

or dark strips with varying widths proportional to the pulse

durations. The minimum strip width, measured in pixels, is

computed as w0 = τm/τr. An L-bit long data packet yields

a strip pattern extending w0L pixels in height. That is, to

recover the complete information carried by the data packet,

we need a strip pattern with at least w0L rows of pixels.

The pattern size is bounded by the image height H , i.e.,

w0L ≤ H . It follows τr < τm ≤ τrH/L.

We further consider a circular-shaped LED of diameter A.

The maximum image size S of the LED radiation surface at

a given distance d is described by S = Af/d, where f is the

camera focal length in pixels. The data packet is decodable

only if the condition S ≥ w0L holds:

d ≤ dm =
Af

w0L
=

τrAf

τmL
(1)

1We consider the fundamental frequency components for analysis conve-
nience. In a more strict sense, we should consider high-order harmonics of
the square wave signals. For example to recover its third-order harmonics,
we should have 3fh < fs/2 and fm < fs/3.



where dm is the maximum range for VLC decoding. The

determining factors include the focal length f and row

read-out time τr of the rolling-shutter camera, the radiation

surface size A and the OOK modulation interval τm of the

LED transmitter, and also the data packet size L in use.

B. Protocol Definition

The designed data packet begins with a 4-bit pream-

ble PS = b0001, precedes with a 16-bit Manchester-coded

data payload DATA, and ends with another 4-bit symbol

ES = b0111. This format yields a 24-bit long data packet

with balanced DC-components to circumvent the LED flicker

issue. The payload carries one byte of IDs, e.g., labeling up to

256 LEDs. The channel capacity can be extended by a larger

payload. Yet, we are motivated to improve the maximum

VLC decoding distance dm by using a smaller packet size L
instead, as suggested by Eq. 1, due to hardware limitations

in our implementation. To do so, we further omit any special

packet section for error checking or data recovery.

C. LED Detection

Rolling-shutter cameras can capture strip patterns from a

flashing LED during underexposure. Natural features are not

observable, while bright objects (e.g., LEDs) can be easily

distinguished. Normally, the strips are parallel to image rows

and interleaving in the column direction. We are interested in

those regions as they carry VLC information. To locate the

bright blobs in the image and extract such regions of interest

(ROI), we first binarize the grayscale image by thresholding.

We then dilate the binary image in the column direction to

fill strip gaps. After that, the bright strips from a given LED

can join together as a connected blob. We detect blobs and

retain large ones as ROIs for subsequent VLC decoding, as

they are more likely to carry a complete data packet. We

crop the grayscale image using the ROI masks and send the

cropped images to the VLC decoder. In addition, the centroid

pixel for each ROI is undistorted and normalized with the

calibrated camera intrinsics, as image measurements of the

LED feature. Readers may refer to our technical report [18]

for more details. Note that the perspective projection of the

LED (e.g., a circle) centroid, in general, does not squarely

coincide with the centroid of the LED image (e.g., an oval).

Yet in practice, such an approximation error is acceptable for

small objects and can be accommodated by the image noise.

D. VLC Decoding

VLC information is encoded by strips of varying widths.

In each ROI, we pick up the grayscale pixels in the centering

column. We consider the column pixels as 1D time-varying

intensity signals, as the camera’s sampling frequency is

fixed and known. The binary versions are used for OOK

demodulation and Manchester decoding. We adopt adaptive

thresholding to counter the nonuniform illumination artifacts

of LEDs. Now we can obtain the LED’s ID from the

decoding result. The data packet may start at a random

location in an ROI due to the asynchronous communication

mechanism. It happens that only shifted packet versions are

available in some ROIs. To address this problem, we adopt

a bidirectional decoding scheme [17] to improve decoding

success rates. Note that decoding mistakes may happen due

to the lack of a special data integrity checking mechanism in

our protocol. Therefore, the pose estimator should be resilient

to possible data association errors.

E. Implementation Details

We customize dozens of battery-powered LEDs as VLC

transmitters. The LED has a circular radiation surface of

diameter 15.5cm. The rating power is around 3 watts. We

employ a cheap microcontroller to run the VLC protocol on

its firmware and use a MOSFET transistor for driving the

LED current. The modulation frequency fm is set to 16kHz.

We use a Raspberry Pi rolling-shutter camera (Sony IMX219

with a vertical FoV of 48.8 deg) as the VLC receiver. It has

a focal length of 1284 pixels under the image resolution of

1640 by 1232. We manually adjust the camera exposure time

to capture sharp patterns. We experimentally determine the

maximum decoding distance of our hardware setup be around

2.5m, which coincides with the theoretical upper bound of

2.76m computed from Eq. 1. Readers interested in details

can refer to our technical report [18].

IV. GLOBAL LOCALIZATION BY EKF

We consider an indoor environment with modulated LED

lights at known locations (e.g., on the ceiling). The EKF uses

the camera observations to known LED features extracted

by the VLC frontend to correct its state estimates, after

bootstrapping from 2-point global pose initialization.

A. Notations

We define a gravity-aligned global reference frame {G}
with its z-axis pointing upwards to the ceiling. The gravity

vector expressed in {G} is Gg = [0, 0, −g]. The IMU

frame {I} and camera frame {C} are rigidly connected.

The two sensors run freely without any hardware or software

synchronization. The IMU-camera spatial transformation can

be obtained from offline calibration or manual measurements.

To account for calibration inaccuracy, we further include

these extrinsic parameters in the filter state for refinement

by joint estimation. Besides this, the time offset td between

the two sensors is assumed as an unknown constant. We use

the IMU time as the time reference, i.e., timu = tcam +
td, following the convention in [5]. For a camera image

timestamped at t, its actual sampling time instance is t+ td.

We use the unit quaternion A
Bq̄ under JPL convention [19]

to represent the rotation A
BR from frame {B} to {A}, i.e.,

A
BR = R

(

A
Bq̄

)

. ⊗ denotes the quaternion multiplication.

⌊·×⌋ denotes the skew-symmetric matrix. For a quantity a,

we use â for its estimate and ã for the residue.

B. Filter State Definition

The IMU state xI ∈ R
24 is defined as follows [5]:

xI =
[

I
Gq̄

⊤ Gp⊤

I
Gv⊤

I b⊤

g b⊤

a
C
I q̄

⊤ Cp⊤

I td
]⊤

(2)

where I
Gq̄ is the unit quaternion that describes the rotation

I
GR from {G} to {I}, i.e., I

GR = R
(

I
Gq̄

)

; GpI and GvI



are the global IMU position and velocity, respectively; bg

and ba are the gyroscope and accelerometer biases; C
I q̄ is

the unit quaternion that represents the rotation C
I R from the

IMU frame {I} to the camera frame {C}; CpI denotes the

IMU position in {C}; and td is the time offset.

The error state x̃I ∈ R
22 is then given by:

x̃I =
[

I θ̃⊤ Gp̃⊤

I
Gṽ⊤

I b̃⊤

g b̃⊤

a
Iφ̃⊤ C p̃⊤

I t̃d

]⊤

(3)

where for quaternions, we employ the multiplicative error

definition with local perturbations in the IMU frame. That

is, we have I
Gq̄ ≃

[

1

2

I θ̃

1

]

⊗ I
G
ˆ̄q and C

I q̄ ≃ C
I
ˆ̄q ⊗

[

1

2

Iφ̃

1

]

where I θ̃ and Iφ̃ are the 3 × 1 small angle rotation error

vectors expressed in {I}. The standard additive errors apply

to other quantities, e.g., GpI = Gp̂I +
Gp̃I .

C. IMU Propagation

The IMU measures the true angular velocity Iω and linear

acceleration Ia in its local frame {I} as [5]: ωm = Iω +
bg+ng and am = Ia−I

GR
Gg+ba+na. The measurement

errors are modeled as zero-mean white Gaussian noises, i.e.,

ng ∼ N (0,σ2

g) and na ∼ N (0,σ2

a). The continuous-time

dynamics of the state xI is given by:

I
G
˙̄q =

1

2
Ω
(

Iω
)

I
Gq̄,

GṗI = GvI ,
Gv̇I = I

GR
⊤Ia,

ḃg = nwg, ḃa = nwa,
C
I
˙̄q = 0, C ṗI = 0, ṫd = 0 (4)

where Ω(Iω) =

[

−⌊Iω×⌋
Iω

−Iω⊤ 0

]

; and nwg and nwa are the

underlying noise processes that drive the IMU biases, with

nwg ∼ N (0,σ2

wg) and nwa ∼ N (0,σ2

wa). Note that, for

long-term operation, the time offset may vary slowly due

to clock drift between unsynchronized sensors. We can then

model it as a random walk process, i.e., ṫd = ntd with ntd as

the underlying zero-mean Gaussian noise. The propagation

of nominal state x̂I derives from the expectation of Eq. 4:

I
G
˙̄̂q =

1

2
Ω (ω̂) IG ˆ̄q, G ˙̂pI = Gv̂I ,

G ˙̂vI = I
GR̂

⊤â+ Gg (5)

where ω̂ = ωm − b̂g , â = am − b̂a, and I
GR̂ = R

(

I
G
ˆ̄q
)

.

The other quantities such as b̂g remain constant. We can now

predict x̂I in discrete-time by numerical integration.

The linearized continuous-time error state equation is writ-

ten as ˙̃xI = F x̃I +GnI , where nI =
[

n⊤
g n⊤

wg n⊤
a n⊤

wa

]⊤

denotes the continuous-time IMU noise with its covariance

matrix Qc as diag{σ2

g ,σ
2

wg,σ
2

a,σ
2

wa}. The detailed expres-

sions of the system matrix F and the noise input matrix G

are omitted here due to space limitations and can be found

in our technical report [18]. We can now propagate the EKF

state covariance using the discrete-time implementation of

the above-mentioned error state equation.

D. Camera Measurement Update

We assume a calibrated pinhole camera model2. For an

image timestamped at t, we consider the ith feature fi of

2In this section, we assume a simplified global-shutter camera mea-
surement model without considering the rolling-shutter effect on feature
measurements. We leave this issue for our future work.

the decoded LEDs from the VLC frontend. Its measurement

{zi,
Gpfi} is known, where zi is the normalized pixel of

the LED centroid and Gpfi is the global LED position. The

feature observation zi taken at camera time t is given by:

zi(t) = h
(

Cpfi(t+ td)
)

+ nim(t+ td) (6)

Cpfi(t+ td) =
C
I R

I
GR(t+ td)

(

Gpfi −
GpI(t+ td)

)

+ CpI

where nim ∼ N (0,σ2

im) is the image noise; h(·) is

the perspective projection function, i.e., h
(

[x, y, z]⊤
)

=

[x/z, y/z]
⊤

; and Cpfi is the feature position with respect

to the current camera frame at IMU time t+ td.

With the latest state estimate x̂I(t + t̂d) from the IMU

propagation, we can now derive the expected measurement

as ẑi(t) = h
(

C p̂fi(t+ t̂d)
)

, and computed its residue term

z̃i = zi − ẑi by first-order approximation: z̃i ≃ Hx,ix̃I +
Hfi

Gp̃fi + nim. The LED position error Gp̃fi is modeled

as zero-mean white Gaussian noise with covariance σ2

f . The

measurement Jacobian w.r.t. the IMU state Hx,i and the

Jacobian w.r.t. the LED feature position Hfi are given by:

Hx,i = [Hθ,i Hp,i 02×9 Hφ,i Hpc,i Htd,i]

Hθ,i = Ji
C
I R̂ ⌊IGR̂

(

Gp̂fi −
Gp̂I

)

×
⌋

Hp,i = −Ji
C
I R̂

I
GR̂, Hφ,i = Hθ,i, Hpc,i = Ji

Htd,i = Hθ,i ω̂ +Hp,i
Gv̂I , Hfi = −Hp,i (7)

where Ji = ∂h(f)/∂f is the Jacobian of h(·) evaluated at

the expected feature position in the camera frame C p̂fi =

[x̂, ŷ, ẑ]⊤, i.e., Ji =
1

ẑ

[

1 0 −x̂/ẑ
0 1 −ŷ/ẑ

]

.

The filter state and covariance estimates can be updated

by following the general EKF equations [19]. To account

for false data associations from VLC decoding errors, we

perform the Mahalanobis gating test for each observation

before the measurement update. The EKF can naturally

process multiple LED observations in a single image if more

LEDs are successfully decoded.

E. 2-point Pose Initialization

For global localization, we need to initialize the filter with

a 6-degrees-of-freedom (DoF) pose w.r.t. the global frame,

as well as its velocity. Since vision-only methods like PnP

easily suffer from large errors or failure in LED-shortage

scenarios, we steer to an IMU-aided P2P solution that can

work more reliably with two point-feature measurements [7].

IMU measures roll and pitch angles accurately by monitoring

gravity, leaving four unknowns in the camera pose. It has

been proved that there are two closed-form solutions to this

problem [7]. In our applications, moreover, we can obtain a

unique solution by checking its z-direction as the sensor suite

is alway beneath the ceiling. We further refine the pose by

minimizing camera re-projection errors once more than two

LEDs are decoded in the image. Specially, we use the P2P

solution as an initial guess and optimize the pose in 4-DoF

by fixing its roll and pitch. The IMU-centric pose can be

resolved given the sensor extrinsics. The velocity computed

by pose difference is noisy and unreliable to use, especially



when the sensor moves slowly, e.g., for handheld cases and

low-speed robots. Alternatively, we provide the filter with

zero velocity and a large variance. So far, our system can

bootstrap with two or more LEDs decoded in a single image.

V. EXPERIMENTS

We evaluate our system through real-world experiments.

We use the absolute trajectory error (ATE) for global position

accuracy and use the axis-angle error for orientation accuracy

assessment. We set up a room-sized (5*4*2.3 m3) test field

with 25 LEDs evenly mounted on the ceiling (see Fig. 2).

The spacing is around 1-1.5m. We use a customized sensor

suite for data collection, as shown by the right side of Fig.

2. It comprises a Raspberry Pi camera (IMX219, 1640*1232

@10Hz) and a MicroStrain IMU (3DM-GX3-25 @200Hz)

without any synchronization. The motion capture system

(OptiTrack Mocap @120Hz) provides ground truth poses for

our experiments. We set the Mocap world frame to coincide

with the global frame {G}. The extrinsic parameters between

the camera and the Mocap rigid body (i.e., reflective markers

on the sensor suite) are known from hand-eye calibration. We

measured the global 3D location of LEDs using Mocap, as

well as a commodity laser ranger for height compensation.

The algorithm runs on a desktop computer (Intel i7-7700K

CPU @4.20GHz, 16G RAM).

A. Localization Performance

To assess the localization performance3, we have collected

a few datasets in eight trials [see Table I]. Specifically, we

move the handheld sensor suite smoothly by walking in the

test field. We orient the camera upwards facing the ceiling

lights. For the ease of filter initialization, we put the sensor

on the ground and keep it still for a few seconds at the start of

each run. Unless otherwise specified, the global pose in EKF

is initialized by the 2-point initialization method, which will

later be evaluated in section V-C. The extrinsic parameters

{CI q̄,
CpI} are initialized with coarse manual measurements.

The remaining parameters in the filter (e.g., the IMU biases

and time offset) are simply set to zeros.

TABLE I: Description of the eight datasets in use.

Trials 1 2 3 4 5 6 7 8

Time [s] 39.5 33.4 40.7 34.6 66.8 43.4 67.7 133.5

Dist. [m] 30.2 37.1 35.0 27.8 67.6 42.0 69.0 158.6

MaxVel
[m/s]

1.40 1.99 1.49 1.36 1.48 1.55 1.51 1.67

Shape circle square eight random

Fig. 3 shows the results for trial 7 as we walk randomly

in the field for 68s. We use Mocap to denote the ground

truth and use EKF for the estimates. As shown in Fig. 3a,

the estimated trajectory well matches the ground truth. The

global position, orientation and velocity estimates for this

trial, as well as the respective errors compared against the

3Online demonstrations can be found in our supplementary video.
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Fig. 2: Test field (left) and self-assembled sensor suite (right).
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Fig. 3: The random trajectory (a) travels approximately 69m in 68s.
The EKF estimates are very close to the ground truth by visual
comparison. (b) shows the number of LEDs that are successfully
decoded from each camera frame by the VLC frontend. (c) shows
the time offset estimates as well as their uncertainty described by
the standard deviation (SD), as shown in the inner subplot.

ground truth, are shown in Fig. 4. We illustrate the number

of decodable LEDs in each camera frame in Fig. 3b. On the

one hand, we have a very low chance to decode three or more

LEDs in one image despite the dense LED deployment. As

such, vision-only methods can rarely be used in our setting.

On the other hand, we can concurrently decode two LEDs at

a much higher possibility, and thus, bootstrap the proposed

system more easily by 2-point initialization. Furthermore,

we show the time offset estimate t̂d in Fig. 3c, as well as

its standard deviation from the filter covariance matrix. It

converges soon after the sensor starts moving.

The absolute pose errors for the eight trials are shown in

Fig. 5, where the position error is evaluated by ATE and the

orientation error is based on the axis-angle representation.

Fig. 5c shows the time offset estimation results for the last

20s in each run. We can observe that most of these estimates

are consistent, e.g., lying between -24ms and -32ms. There is
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Fig. 4: Global position (a), orientation (b), and velocity (c), as well as their respective errors in trial 7 compared with the ground truth.
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Fig. 5: Absolute position (a) and orientation (b) errors on eight trials. We show the consistency of time offset estimates in (c) by using
results over the last 20s, and compare the performance of the proposed method both with and without online temporal calibration.

TABLE II: Statistics on localization errors and counts of decoded LEDs in eight trials using both dense and sparse feature maps.

Trial 1 2 3 4 5 6 7 8

Position Error
[cm]

RMSE 2.20 / 2.91 3.02 / 3.91 2.67 / 3.22 2.41 / 3.29 2.80 / 2.99 3.59 / 3.97 2.75 / 3.00 3.47 / 4.00

std 0.96 / 1.43 1.40 / 1.88 1.23 / 1.47 0.97 / 1.43 1.20 / 1.39 1.30 / 1.63 1.05 / 1.46 1.79 / 2.11

Rotation Error
[deg]

RMSE 1.07 / 1.09 1.27 / 1.25 1.12 / 1.15 1.00 / 0.97 1.22 / 1.21 0.99 / 1.00 1.10 / 1.12 1.04 / 1.06

std 0.59 / 0.61 0.80 / 0.74 0.71 / 0.73 0.57 / 0.58 0.91 / 0.90 0.59 / 0.57 0.73 / 0.73 0.68 / 0.74

#LED mean 1.59 / 0.86 1.38 / 0.69 1.21 / 0.67 1.21 / 0.69 1.20 / 0.65 1.60 / 0.91 1.79 / 0.95 1.16 / 0.59

Pct. of
#LED

≥ 1 0.86 / 0.69 0.83 / 0.58 0.77 / 0.59 0.78 / 0.57 0.83 / 0.61 0.90 / 0.73 0.92 / 0.76 0.77 / 0.54

≥ 2 0.52 / 0.15 0.42 / 0.11 0.35 / 0.08 0.36 / 0.12 0.32 / 0.05 0.52 / 0.17 0.61 / 0.18 0.33 / 0.05

≥ 3 0.16 / 0.01 0.11 / 0.00 0.08 / 0.00 0.07 / 0.00 0.05 / 0.00 0.15 / 0.01 0.22 / 0.01 0.05 / 0.00

no ground truth time offset for our sensor suite. It may even

vary slightly in different runs due to the lack of hardware

synchronization. Further, we study the impact of temporal

calibration on our localization performance. With online time

offset estimation activated, the proposed method significantly

outperforms its counterpart without such a calibration, say

on the eight trials in terms of both the global position

accuracy and orientation accuracy. We note that the extreme

outliers in orientation, as shown in Fig. 5b, are most probably

caused by the occasional Mocap tracking errors (especially

the rotation) at certain places, e.g., due to the blockage of

reflective markers by the experimenter. By revisiting the

orientation plots in Fig. 4b, we observe that the yaw direction

is consistently smooth while the roll and pitch directions

have a few spikes (e.g., at the 30s). Since EKF estimates

are normally smooth after converging, those spikes are most

probably caused by the Mocap system.

B. Robustness Test under LED Shortage/Outage

We aim to explore the robustness of our system in more

challenging scenarios, e.g., with less decodable LEDs in

a single view (say LED shortage) or with the complete

absence of LEDs in a certain period (say LED outage). These

problems may arise from many practical factors, such as the

lights deployment density and the maximum VLC decoding

range supported by the hardware setup. We here look into the

LED shortage problem by altering the deployment density.

To do so, we uniformly remove half of the 25 LEDs from



the original dense map. This results in a sparse map with

12 LEDs. We simply discard measurements from those

removed ones. Unlike commercial lights for illumination, our

prototype LEDs have a much smaller radiation surface (e.g.,

15cm in diameter), as well as a reduced VLC decoding range.

The 12 circular LEDs are reasonably sparse for localization

in the test field. As a comparison, 10 pairs of standard

fluorescent tubes are deployed in the same area.

Table. II summarizes the statistics on absolute position and

rotation errors, along with the counts of decodable LEDs in

the camera view. The results from the dense map are shown

before that from the sparse map side by side. We show the

root-mean-squared error (RMSE) and the respective standard

deviation for the estimated poses. We notice that the position

errors increase as the map density decreases, e.g., with larger

RMSE errors and standard deviations. Yet, we do not find any

substantial variation in rotation errors. The maximum RMSE

position error (e.g., 4 cm in trial 8) arises from the sparse

map, while the maximum RMSE rotation error (e.g., 1.27 deg

in trial 2) comes from the dense map. The average number

of decodable LEDs in the sparse map is almost half of that in

the dense map, indicating a substantial loss of usable LED

features. In the meantime, the performance degradation in

positioning accuracy is relatively marginal.

Also, we show the percentage of frames that can decode

a certain number of LEDs in Table. II. The percentage of

decoding three or more LEDs is extremely low, especially

in the sparse map. Meanwhile, we have a much higher

possibility to decode one or more LEDs. As we know, EKF

can still keep correcting its estimates with one observation

only. The chance remains to observe two decodable LEDs si-

multaneously in the sparse map. As such, our system can still

bootstrap from 2-point initialization. Therefore, our method

has better usability than those vision-only counterparts.

Further, we explore the system performance in situations

with an intermediate LED outage. Specifically, we study the

short-term outage problem by dropping different quantities

of camera frames in a given period. For example, we can

simulate an effective camera rate of 1Hz by dropping 9 out of

10 frames for every 1s. We choose five different camera rates

from 10Hz to 0.5Hz. The respective pose errors are shown

in Fig. 6. The system can bootstrap on its own at the camera

rate of 1Hz. Aided by its normal initialization at 10Hz, the

system can finally sustain at 0.5Hz without diverging. In

other words, the system is tolerant to a certain short-term

LED outage, e.g., less than 2s, during normal walking.

C. 2-point Initialization and Failure Recovery

The 2-point initialization plays important roles in filter

bootstrapping and recovery from failure, e.g., due to the

long-term LED outage. We want to evaluate the accuracy

of our IMU-aided P2P solution with 4-DoF pose refinement.

Moreover, we are interested in investigating the impact of the

initial pose estimate on the overall localization performance.

To this end, we initialize the filter using both the P2P-based

solution and the ground truth. Fig. 7 shows the pose errors

on trial 1, 3, 5, and 7. We use P2P to denote the results
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Fig. 6: Pose errors in trial 7 at different camera rates. The maximum
position errors are 27cm at 1Hz and 37cm at 0.5Hz. Note that we
manually remove an extreme rotation outlier at the 30s (around 10
deg) caused by Mocap tracking errors, as illustrated by Fig. 4b.
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Fig. 7: Pose errors evaluated on trial 1, 3, 5, and 7. We compared
the results from P2P, the EKF initialized by the Mocap ground truth,
and the EKF initialized by P2P. There is no statistically significant
difference in performance between the latter two cases.
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Fig. 8: Position estimates in trial 7 under longer periods of outage:
T1=[15s 20s], T2=[25s 30s], T3=[35s 45s], T4=[50s 60s]. Besides
this, we show the two times error standard deviation 2σ estimated
by EKF, as well as the measured position error in the error plot. It
is shown in log-scale for better visualization.

from our 2-point pose initialization. We use EKF-Mocap for

indicating the results from the Mocap-initialized EKF while

using EKF-P2P for the P2P-initialized EKF. The P2P acts as

a baseline for comparison. We notice that P2P suffers from

larger pose errors. Even though, we can achieve a median

position error around 5 cm and a median orientation error

around 3 degrees. The pose estimation results from both

EKF-Mocap and EKF-P2P are almost the same. We can not

find any statistically significant difference. So far, we may

safely prove the efficacy of the proposed 2-point initialization

method for filter bootstrapping.



Fig. 8 illustrates the case of failure recovery under the

long-term outage, where we take trial 7 as an example. We

manually introduce four outage periods: T1 and T2 last for

5s, while T3 and T4 last for 10s. In the first two periods,

the filter begins to diverge after losing LED observations

but can converge again once new features are available.

The increasing position error is well estimated by EKF, as

indicated by the error plot of Fig. 8. In the latter two cases,

the filter uncertainty grows too high that the failure recovery

mechanism is triggered, preventing the output of erroneous

estimates. The filter can be reinitialized soon after the camera

observes two or more decodable LEDs.

D. Runtime Analysis

To evaluate the runtime efficiency, we also run the pro-

posed algorithm on a Raspberry Pi 3B single-board com-

puter (Cortex-A53 @1.2GHz, 1G RAM). We implement two

threads: one for VLC decoding and the other for EKF estima-

tion. We summarize the average runtime to process an image

taken by each thread in Table. III. The runtime is dominated

by the VLC thread. The algorithm efficiency can be improved

by optimizing the image processing pipeline for VLC de-

coding. Nevertheless, we can achieve real-time performance

on Raspberry Pi 3B without any code optimization for ARM

processors, considering a camera rate of 10Hz. The proposed

VLC-inertial localization system is hence lightweight to use

on resource-constrained computational platforms.

TABLE III: Runtime statistics.

Module VLC (Thread 1) EKF (Thread 2)

Desktop PC 2.3 ms 0.7 ms

Raspberry Pi 3B 40.5 ms 9.7 ms

E. Discussions

The proposed system suffers a few limitations. We use

only circular LEDs of the same form factor for evaluation

due to the difficulty in hardware preparation. The number

of encodable LEDs is subject to the usable VLC channel

capacity supported by our hardware. Besides, we resort to a

simplified global-shutter camera model for the EKF update.

In future work, we plan to employ a rolling-shutter model

instead. We exploit ceiling-mounted LEDs in our system and

thus assume an upward-facing camera for normal operation.

The change in camera orientation (say roll and pitch) is often

limited during motions. The system can accommodate some

temporally larger orientation changes by inertial tracking at

the risk of losing LED observations though. We leave this

issue for our future work. It would be interesting to improve

the system by using natural visual features as well for better

tracking performance in LED absent periods.

VI. CONCLUSION

This paper presented an EKF-based tightly coupled VLC-

inertial localization system by using modulated LED lights

in modern buildings as artificial visual landmarks, especially

for lightweight global localization on resource-constrained

platforms. Our system employed a rolling-shutter camera and

an unsynchronized IMU. The EKF localizer tightly fused

inertial measurements with visual measurements of VLC-

enabled LEDs. We further completed our system by 2-point

global pose initialization for filter bootstrapping and failure

recovery. Our system managed to be bootstrapped from two

and more LED features in a single image and then sustained

by EKF. The system and method were verified by extensive

field experiments in a Mocap-room mounted with dozens

of LED prototypes. It has been shown that our system

can reliably provide lightweight real-time accurate global

pose estimates in LED-shortage situations. The robustness

under short-term LED outage, as well as the failure recovery

behavior under long-term outage, was also demonstrated.
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