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Abstract— This paper considers distributed flocking control
on the Special Euclidean group for networked rigid bodies.
The method captures the three flocking rules proposed by
Reynolds: cohesion; alignment; and separation. The proposed
controller is based only on relative pose (position and attitude)
information with respect to neighboring rigid bodies so that it
can be implemented in a fully distributed manner using only
local sensors. The flocking algorithm is moreover based on pose
synchronization methods for the cohesion/alignment rules and
achieves safe separation distances through the application of
control barrier functions. The control input for each rigid body
is chosen by solving a distributed optimization problem with
constraints for pose synchronization and collision avoidance.
Here, the inherent conflict between cohesion and separation
is explicitly handled by relaxing the position synchronization
constraint. The effectiveness of the proposed flocking algorithm
is demonstrated via simulation and hardware experiments.

I. INTRODUCTION

Flocking, swarming, and schooling are common emergent
collective motion behaviors exhibited in nature [1], [2].
These natural collective behaviors can be leveraged in multi-
robot systems to safely transport large cohesive groups of
robots within a workspace. To capture these effects, Reynolds
introduced three heuristic rules: cohesion; alignment; and
separation, to reproduce flocking motions in computer graph-
ics in 1987 [3]. These rules have been applied by researchers
in various fields including physics, biology, social science,
and computer science [4]–[8]. The scope and flexibility of
this motion coordination strategy have also caused it to
be widely leveraged by robotics and control engineering
communities to develop motion coordination control methods
for multi-robot systems [9]–[19].

This paper tackles the 3-dimensional (3D) flocking control
problem for multiple rigid bodies. The main goal is to
develop a distributed control algorithm embodying the above
three fundamental flocking rules while explicitly taking 3D
attitude dynamics into account. Since these rules have an
inherent conflict between cohesion and separation, this work
aims to explicitly handle this conflict. Moreover, in order to
enable application of the proposed algorithm in environments
without global feedback, the information each rigid body
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needs to generate the flocking control inputs is reduced to
relative information about neighboring rigid bodies. This
information restriction enables each rigid body to implement
a control law by using only local sensors, such as vision
or infrared, without any other communication or global
information. This feature, based only on local and relative
information, is referred to as fully distributed in this paper.

Flocking control problems have been tackled by many
researchers [10]-[19], where Reynolds’s three rules are re-
spectively considered as position synchronization (cohesion),
attitude synchronization/velocity matching (alignment), and
collision avoidance (separation). However, some flocking
implementations regard an agent as a particle, i.e., its attitude
is not considered [10]-[13]. Even in the case that attitudes
are taken into consideration, to reduce complexity, 2D cases
are often considered [14]-[17]. On the other hand, due to the
conflict between cohesion and separation, related research of-
ten handles a subset of Reynolds’s three rules, e.g., collision
avoidance (separation) is not considered, or only alignment
is achieved [13], [17], [18]. Compared with these studies,
this work deals with rigid bodies with pose (position and
attitude) dynamics on the Special Euclidean group SE(3),
and presents a distributed flocking algorithm to achieve all
three rules simultaneously by solving a single optimization
problem to minimize the conflict between cohesion and
separation.

The research in [19] and [20] is the most related to this
work. The authors in [19] also propose a 3D flocking algo-
rithm incorporating the three rules. They provide theoretical
guarantees on the achievement of alignment and separation
behaviors. However, since their separation approach is based
on an unbounded potential function, only the boundedness
of the relative positions is proved for a cohesion behavior.
Compared with that work, this paper newly proposes a
flocking method with numerical optimization. This method
guarantees a separation behavior and achieves a cohesion
behavior as much as possible by minimizing a parameter to
manage the conflict. The same optimization based approach
is presented in [20] that can also achieve cohesion and
separation behaviors. However, that work handles 2D ground
vehicles and does not consider their attitudes, i.e., implicitly
assumes the global attitude agreement among vehicles.

In summary, the main contribution of this paper is a novel
3D flocking algorithm based on distributed optimization
to minimize the conflict between cohesion and separation.
We first define a rigid body network consisting of 3D
pose dynamics and interconnection topology representing
information flow between rigid bodies. Then, the control
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Fig. 1. Multiple rigid bodies in 3D space. Each rigid body has the
rigid body motion as its motion dynamics. The available information for
its control input is restricted to be relative information with respect to its
neighbors.

objective incorporating the three fundamental flocking rules
is stated, and the optimization approach explicitly handling
the conflict is explained. Here, cohesion, alignment, and
separation are respectively considered as position synchro-
nization, attitude synchronization, and collision avoidance.
The proposed method is based on pose synchronization tech-
niques [19] for cohesion/alignment and collision avoidance
schemes with control barrier functions [21] for separation.
The control input for each rigid body is chosen by solv-
ing a distributed optimization problem with constraints for
pose synchronization and collision avoidance. A relaxation
parameter is introduced to the constraints for position syn-
chronization and is minimized in the optimization to allow
the most cohesion within the group as possible without
collisions. This paper also provides theoretical guarantees
for the cohesion/alignment method and separation one. The
effectiveness of the proposed flocking algorithm is demon-
strated via simulation and hardware experiments.

II. PROBLEM FORMULATION

A. Rigid Body Network

Throughout this work, we consider a network of n rigid
bodies in 3D space as illustrated in Fig. 1. Let the world
frame be Σw and body-fixed frames Σi, i ∈ V :=
{1, . . . , n}. The pose of rigid body i relative to Σw is denoted
by gwi = (pwi, e

ξ̂wiθwi) ∈ SE(3) := R3×SO(3), SO(3) :=
{R ∈ R3×3 | RRT = I3, detR = 1}. (In ∈ Rn×n is the
n × n identity matrix.) Here, the attitude is given by the
exponential coordinate of the rotation matrix eξ̂θ ∈ SO(3)
with the rotation axis ξ ∈ R3 (∥ξ∥ = 1) and angle θ ∈ R
[22]. The operator ∧ : R3 → so(3) := {S ∈ R3×3 |
S + ST = O3} provides âb = a × b for any 3D vectors
a, b ∈ R3, and ∨ : so(3) → R3 is its inverse operator.
(On ∈ Rn×n is the n × n zero matrix.) For the ease of
representation, ξ̂wiθwi is written by ξ̂θwi in this paper.

The body velocity of rigid body i relative to Σw is
represented by V b

wi = [(vbwi)
T (ωb

wi)
T]T ∈ R6, where

vbwi, ω
b
wi ∈ R3 are the translational and angular body ve-

locity, respectively. The pose g and body velocity V b can be
written by the following homogeneous representation:

g =

[
eξ̂θ p
0 1

]
∈ R4×4, V̂ b =

[
ω̂ v
0 0

]
∈ R4×4.

In this formulation, the body velocity is given by V̂ b
wi =

g−1
wi ġwi, which provides the following rigid body motion as

the motion dynamics of each rigid body i ∈ V [22]:

ġwi = gwiV̂
b
wi. (1)

This work considers the body velocity V b
wi, viewed from Σi,

as the control input of rigid body i.
The interconnection topology between rigid bodies is

represented by an undirected graph G = (V, E) [23], where V
is the set of rigid bodies and E ⊂ V×V the edge set defining
information flow between rigid bodies. Then, the neighbor
set of rigid body i is defined as Ni := {j ∈ V | (j, i) ∈ E},
which is analogous to rigid body i obtaining information
about rigid body j if j ∈ Ni. Since this work considers
undirected information flow, j ∈ Ni ⇔ i ∈ Nj holds.

In the subsequent discussion, a group of n rigid bodies
with rigid body motion (1) and the interconnection topology
G is called a rigid body network.

B. Control Objective

The goal of this work is to propose a distributed flocking
algorithm embodying Reynolds’s flocking rules: cohesion;
alignment; and separation, while explicitly dealing with the
conflict between cohesion and separation. To formulate this
objective, let us first introduce the relative pose of rigid body
j with respect to rigid body i defined as gij := g−1

wi gwj =

(pij , e
ξ̂θij ) ∈ SE(3).

This work imposes the information restriction that only
the relative poses gij with respect to neighboring rigid bodies
j ∈ Ni (and neighbors for separation) are available for the
control input V b

wi of each rigid body i ∈ V . This restriction
enables each rigid body to implement the control law only
by its own relative sensing device, i.e., as a fully distributed
system as in [24], [25].

Let us now define the control objective. Since the flocking
rules have an inherent conflict between cohesion and sepa-
ration, these objectives are first considered separately. The
cohesion and alignment objectives can be considered as pose
synchronization whose definition is given as follows:

Definition 1: The rigid body network is said to achieve
pose synchronization if

lim
t→∞

∥pij(t)∥ = 0 ∀i, j ∈ V, (2a)

lim
t→∞

ϕ(eξ̂θij (t)) = 0 ∀i, j ∈ V, (2b)

where ϕ(eξ̂θ) := ∥ log(eξ̂θ)∨∥2 ≥ 0 is the scalar function to
indicate the attitude error from the origin: ϕ(I3) = 0 [26].

Equation (2) is only satisfied when the poses of all rigid
bodies converge to a common one, i.e., cohesion and align-
ment are achieved (see Fig. 2(a)). Individual equalities (2a)
and (2b) describe position and attitude requirements which
are also referred to as position synchronization and attitude
synchronization, respectively. Here, position synchronization
(2a) is just a theoretical aspiration, i.e., not actually achieved
in a physical system, to make it easy to understand the
concept of cohesion.

Beyond the pose synchronization, successful flocking of
rigid bodies additionally requires a separation behavior.



(a) Pose synchronization. (b) Collision.

Fig. 2. Cartoon representation of (a) pose synchronization and (b) collision.
(a): All rigid bodies converge to the same position and attitude. (b): The
distance between rigid bodies is less than their diameter Dc.

Collisions between rigid bodies and collision avoidance in
the rigid body network are defined as follows (see Fig. 2(b)):

Definition 2: Rigid body i and rigid body j are said to
collide with each other if

∥pwi − pwj∥ < Dc,

where Dc > 0 is the collision distance. Then, the rigid body
network is said to achieve collision avoidance if

∥pwi(t)− pwj(t)∥ ≥ Dc ∀i, j ∈ V (i ̸= j), t ≥ 0. (3)

By defining the following set for the rigid body network:

C :={pwi, i ∈ V | ∥pwi − pwj∥≥Dc ∀i, j ∈ V (i ̸= j)}, (4)

collision avoidance (3) is analogous to the forward invariance
of the set C. Notice here that collision avoidance (3) must
be guaranteed over position synchronization (2) in practice
as collisions can damage or destroy individuals within the
collective.

In summary, the control objective of the rigid body net-
work is to achieve the following three requirements accord-
ing to the flocking rules:
(i) position synchronization (2a) as much as possible;

(ii) attitude synchronization (2b);
(iii) collision avoidance (3).

C. Proposed Optimization Approach

In order to handle control objective (i) explicitly, this work
employs the following type of optimization problem for each
rigid body i ∈ V in the rigid body network:

min
V b
wi∈R6, δi∈R

(V b
wi)

TV b
wi + δ2i

s.t. Objectives (i), (ii), and (iii) are achieved. (5)

In this optimization formulation, the achievement of the
flocking motion is managed by constraints. Here, the relax-
ation parameter δi ∈ R is introduced to the constraint for
objective (i) since we aim to achieve position synchronization
(2a) as much as possible. (The formal definition of δi is
provided in Section III-C.) In other words, δi manages
the inherent conflict between position synchronization (2a)
and collision avoidance (3). Then, minimizing δ2i in this
optimization problem implies achieving objective (i). We also
introduce the quadratic form of the control input V b

wi to the

cost function in order to avoid undesired input excitation and
save input energy.1

The constraints for pose synchronization (2) and collision
avoidance (3) are further developed in Section III.

D. Review of Control Barrier Functions for Collision Avoid-
ance and their Application to Quadratic Programs

As the preliminary of this work, let us briefly introduce a
notion of a control barrier function (CBF) and its application
to a control method based on a quadratic program (QP) (see
[21] for more details). Consider the system

ẋ = f(x) + g(x)u, x ∈ Rm, u ∈ Rl

and a task to ensure the forward invariance of the set

Co = {x ∈ Rm | H(x) ≥ 0}.

Here, f : Rm → Rm and g : Rm → Rm×l are locally
Lipschitz, and H : Rm → R is a continuously differentiable
function.

For this task, a zeroing CBF is defined as follows:
Definition 3: ([21]) The function H is said to be a Zeroing

Control Barrier Function (ZCBF) for the set Co if there
exists an extended class K function α : R → R such that

sup
u∈Rl

(
Ḣ(x) + α (H(x))

)
≥ 0.

Then, the following fact holds:
Fact 1: ([21]) If the function H is a ZCBF for the set

Co, then any Lipschitz continuous controller u satisfying

LfH(x) + LgH(x)u+ α(H(x)) ≥ 0 (6)

will render the set Co forward invariant. Here, Lf and Lg

are the Lie derivatives along f and g, respectively.
Condition (6) is called the ZCBF condition in this paper.

Then, this work designs ZCBFs and derives ZCBF condi-
tions, based only on relative pose information with respect
to neighboring rigid bodies, for each rigid body to avoid
collisions.

The work [21] also proposes a Lyapunov-based control
approach with a guarantee of the forward invariance of Co

by a CBF. Suppose that the control objective (task) is given
by a control Lyapunov function Uo ≥ 0, i.e., the control
objective is limt→∞ Uo(t) = 0. This can be achieved by
choosing a Lipschitz continuous controller u satisfying

LfUo(x) + LgUo(x)u+ cUo(x) ≤ 0, c > 0. (7)

Then, by taking the possibility of the conflict between
(6) and (7) into consideration, the authors in [21] present
the following control input given by a solution of a QP to
guarantee the forward invariance of the set Co and to achieve
the control objective as much as possible:

u∗ = arg min
u∈Rl, δ∈R

uTu+ δ2

s.t. LfH(x) + LgH(x)u+ α(H(x)) ≥ 0,

LfUo(x) + LgUo(x)u+ cUo(x)− δ ≤ 0.

1We can also apply a positive weight to δ2i in order to tune the importance
of its minimization compared with ∥V b

wi∥2.



Here, condition (7) for the control objective is relaxed by
δ ∈ R to manage the conflict.

This work employs this optimization technique for the
achievement of the flocking behavior, where the collision
avoidance is handled by constraint (6) and the relaxed pose
synchronization is incorporated through constraint (7).

III. OPTIMIZATION-BASED FLOCKING CONTROL

A. ZCBF Conditions for Collision Avoidance

Let us first consider ZCBFs for collision avoidance (3),
i.e., separation. Notice that it is sufficient for each rigid body
to avoid collisions only when it is near others. Therefore, in
addition to the graph G for the pose synchronization, we
introduce another distance-based graph G′ = (V, E ′), E ′ :=
{(i, j) ∈ V (i ̸= j) | ∥pij∥ ≤ Da ∀i, j ∈ V} that is often
called a ∆-disk proximity graph [23]. Here, Da > Dc is the
distance within which rigid bodies take separation behaviors
into consideration. Then, a new neighbor set of rigid body i
for the collision avoidance, referred to as distance neighbors,
is defined as Ndi := {j ∈ V | (j, i) ∈ E ′}.

By defining the ZCBF candidates as Hij := ∥pwi −
pwj∥2 −D2

c ∈ R for i, j ∈ V and rewriting (4) as

C = {pwi, i ∈ V | Hij ≥ 0 ∀i, j ∈ V (i ̸= j)},

the forward invariance of the set C for the rigid body network
guarantees collision free motions for all time. Then, based
on Fact 1, we have the following theorem indicating the
achievement of collision avoidance (3):

Theorem 1: Let the initial positions of the rigid body
network satisfy {pwi(0)}i∈V ∈ C. Then, the set C is forward
invariant if vbwi is chosen to be Lipschitz continuous and
satisfy the following condition for each rigid body i ∈ V:

pT
ijv

b
wi ≤ kc(∥pij∥2 −D2

c ) ∀j ∈ Ndi, kc > 0. (8)

Proof: Based on (6) in Fact 1, we first obtain the
following ZCBF condition for rigid body i by differentiating
Hij with respect to time for rigid body j ∈ Ndi:

2(pwi − pwj)
T(ṗwi − ṗwj) ≥ −4kc(∥pwi − pwj∥2 −D2

c )

∀j ∈ Ndi. (9)

Here, we employ the extended class K function α(H) =
4kcH with kc > 0,2 and note that only the distance neighbors
j ∈ Ndi are considered here since Hij > 0 holds for any
j ∈ V \ Ndi (j ̸= i) from Da > Dc. Rigid body motion
(1) and the relative pose definition allow condition (9) to be
rewritten using relative pose information as follows:

−pT
ijv

b
wi − pT

jiv
b
wj ≥ −2kc(∥pij∥2 −D2

c ) ∀j ∈ Ndi. (10)

Notice, however, that condition (10) is not distributed, i.e.,
if rigid body i tries to satisfy (10), input information of
its distance neighbors and its own relative positions viewed
from those neighbors are necessary. Therefore, we consider
distributed condition (8) to satisfy (10). Then, since j ∈

2Any extended class K functions can be employed as α(H), e.g.,
α(H) = γH3, γ > 0. It is usually selected in view of control requirements
and the existence of solutions of the resulting QPs.

Ndi ⇔ i ∈ Ndj holds, satisfying (8) for all i ∈ V results in
the satisfaction of (10), i.e., (9), for all i ∈ V . Here, replacing
(10) with (8) can be interpreted as sharing condition (10)
equally,3 between rigid body i and rigid body j. Fact 1 thus
concludes the forward invariance of the set C.

This work employs condition (8) as the constraint for
control objective (iii) by the QP presented in (5).

Remark 1: ZCBF condition (8), for each rigid body i, is
distributed since it is based only on information about its
distance neighbors j ∈ Ndi. Condition (8) is also based only
on relative position information pij viewed from Σi.

B. Conditions for Pose Synchronization

We next derive conditions for pose synchronization (2),
i.e., cohesion and alignment. Consider the following condi-
tions on the body velocity input V b

wi for each rigid body
i ∈ V:∑

j∈Ni

pT
ijv

b
wi ≥ kp

∥∥∥∥ ∑
j∈Ni

pij

∥∥∥∥2, (11)

∑
j∈Ni

(log(eξ̂θij )∨)Tωb
wi ≥ ke

∥∥∥∥ ∑
j∈Ni

log(eξ̂θij )∨
∥∥∥∥2. (12)

Here, kp, ke > 0 are gains.
Condition (11) for position synchronization (2a) can be

rewritten as∑
j∈Ni

pT
ij

∥
∑

j∈Ni
pij∥

vbwi ≥ kp

∥∥∥∥ ∑
j∈Ni

pij

∥∥∥∥ ≥ 0

when
∑

j∈Ni
pij ̸= 0. This means that the inner product of

the input vbwi and a unit vector toward the centroid of the
relative positions on Ni viewed from Σi is not negative, that
is, the direction of the translational velocity is chosen to ap-
proach the centroid. The size of the input vbwi is based on the
distance to the centroid multiplied by kp, i.e., kp has a gain-
like effect to regulate the produced velocity. This behavior
eventually achieves position synchronization (2a) as shown in
the next theorem. Condition (12) for attitude synchronization
(2b) can be interpreted similarly since log(eξ̂θ)∨ = ξθ holds
for |θ| < π, i.e., its direction is equivalent to the rotation
axis [26], and attitude synchronization (2b) can be regarded
as the synchronization of the rotation axes and angles.

Then, we have the following theorem indicating the
achievement of pose synchronization (2):

Theorem 2: Suppose that the interconnection topology G
in the rigid body network is fixed and connected, and the
attitudes satisfy |θij(t)| < π for all i, j ∈ V , t ≥ 0. Then,
pose synchronization (2) is achieved if V b

wi is chosen to be
Lipschitz continuous and satisfy conditions (11) and (12) for
all i ∈ V .

Proof: See Appendix.
This work employs condition (12) as the constraint for

control objective (ii) by the QP presented in (5).

3It is also possible to employ weights wij , (j, i) ∈ E ′ such that wij +
wji = 1 for sharing condition (10) between rigid body i and rigid body j.



Remark 2: Conditions (11) and (12) are also distributed,
i.e., based only on information about Ni, and built by
relative pose information gij viewed from Σi. Although
the assumption |θij(t)| < π ∀i, j ∈ V, t ≥ 0 seems to
be restrictive, it can be relaxed to be the initial attitude
condition, which is given in the next section.

C. Flocking Algorithm

The final flocking algorithm combines the QP constraints
developed in Sections III-A and III-B. These constraints
cannot be applied simultaneously in their current form since
position synchronization (2a) and collision avoidance (3)
(i.e., cohesion and separation) cannot be achieved at the same
time. When applying this kind of flocking control to a multi-
robot system, collision avoidance must be achieved to avoid
potential damage of individuals within the collective. We thus
relax condition (11) by introducing δi ≥ 0 as follows:∑

j∈Ni

pT
ijv

b
wi ≥ kp

∥∥∥∥ ∑
j∈Ni

pij

∥∥∥∥2 − δi. (13)

This work employs condition (13) as the constraint for
control objective (i) by the QP presented in (5).

In summary, for each rigid body i ∈ V in the rigid body
network, we propose the following flocking control input
given by the solution of the QP in (5) with (8), (12), and
(13):

V ∗
i = arg min

V b
wi∈R6, δi≥0

(V b
wi)

TV b
wi + δ2i

s.t.
∑
j∈Ni

pT
ijv

b
wi ≥ kp

∥∥∥∥∑
j∈Ni

pij

∥∥∥∥2 − δi,

∑
j∈Ni

(log(eξ̂θij )∨)Tωb
wi ≥ ke

∥∥∥∥ ∑
j∈Ni

log(eξ̂θij )∨
∥∥∥∥2,

pT
ijv

b
wi ≤ kc(∥pij∥2 −D2

c ) ∀j ∈ Ndi. (14)

The optimization in (14) is feasible in the collision avoidance
set C, thanks to the QP formulation with the relaxation
parameter δi, which provides a unique optimal solution in the
sense of the minimization of both ∥V b

wi∥ and δi. As stated in
Section II-C, the minimization of ∥V b

wi∥ can be considered
as attenuating undesired input excitation and saving energy,
while minimizing δi aims to achieve position synchronization
(2a) as much as possible while maintaining safe distances
between all rigid bodies to avoid collisions.

For the proposed flocking algorithm (14), we have the
following theorem:

Theorem 3: If the initial poses of the rigid body network
satisfy {pwi(0)}i∈V ∈ C, |θij(0)| < π ∀i, j ∈ V and
the interconnection topology G is fixed and connected, then
flocking algorithm (14) achieves attitude synchronization
(2b) and collision avoidance (3).

Proof: See Appendix.
Theorem 3 guarantees the achievement of alignment and

separation. Moreover, since minimizing δ2i implies to achieve
condition (11) as much as possible, we can also expect

the achievement of the most cohesion as possible while
respecting the necessary separation distances for safety.

Remark 3: The proposed flocking algorithm (14) is fully
distributed. This feature enables each rigid body to imple-
ment its control input by using only local sensors. Another
advantage of the present approach is the ease of incorporating
other functions for the rigid body network by additionally
imposing constraints for, e.g., connectivity maintenance [29]
and input limitations. Especially, we can easily introduce
translational velocity input saturation, e.g., ∥vbwi∥ ≤ vmax

for some vmax > 0, since at least vbwi = 0 satisfies the
constraints in (14) for bounded relative positions pij , j ∈ Ni.

D. Flocking with Desired Behavior

So far we have shown that flocking algorithm (14) captures
all three requirements: cohesion; alignment; and separa-
tion. However, the rigid body network will stop after the
achievement of the flocking behavior by this method. This
is not suited to some situations, e.g., the network must move
through an area. We thus provide an extension of the present
algorithm to move in a desired direction.

Suppose that there exists a beacon, e.g., tower or mountain,
in Σw, and all rigid bodies in the network have common
translational velocity vd ∈ R3 to move toward it. Then, by
introducing the rotation matrix eξ̂θwb ∈ SO(3) to represent
the direction of vd to the beacon in Σw, we can modify the
translational velocity input given by (14) as follows:

vbwi = v∗i + eξ̂θibvd, i ∈ V. (15)

Here, v∗i ∈ R3 is the translational component of V ∗
i in (14).

Notice now that the additional term is also formed by
the relative information with respect to the beacon because
of eξ̂θibvd = e−ξ̂θwieξ̂θwbvd that points the direction to the
beacon viewed from Σi. We also note that the velocity
modification of (15) does not affect the time derivative of
the term ∥pwi − pwj∥2. This means that the time evolution
of relative poses does not change, that is, even with the
velocity modification of (15), the same flocking behavior
as (14) is achieved. If necessary, common angular velocity
ωd ∈ R3 can be also introduced as ωb

wi = ω∗
i + eξ̂θibωd

because ϕ̇(eξ̂θij ) does not change due to this modification.

IV. EXPERIMENTAL RESULTS
A. Simulation

3D simulation is first conducted to demonstrate the pro-
posed fully distributed flocking algorithm (14), (15). Con-
sider the rigid body network with 30 rigid bodies. The
interconnection topology between rigid bodies is given as
a cyclic undirected graph G, i.e., Ni = {i − 1, i + 1} for
i ∈ {2, . . . , 29}, N1 = {30, 2}, and N30 = {29, 1}. Let
the initial poses gwi(0), i ∈ V be randomly set such that
pwi(0) ∈ [−50, 50]3 [m]3 and θwi(0) ∈ (−π/2, π/2) [rad]
that satisfies the initial attitude condition of Theorem 3. Then,
flocking algorithm (14), (15) developed in this paper, with
kp = 2, ke = 3, kc = 0.5, Dc = 0.5 [m], Da = 5 [m], and
eξ̂θwbvd = [2.5 2.5 2.5]T [m/s], is applied to each rigid body
in the rigid body network.



(a) 3D position trajectories in Σw .
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(b) Time responses of 3D attitudes in Σw .
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Fig. 3. Simulation results. (a): The rigid body network achieves the cohesion behavior and moves in the desired direction. (b): Red, green, and blue lines
represent the attitudes of all rigid bodies around x-, y-, and z-axes in Σw . All the angles of each axis converge to a common one, i.e., the achievement of
the alignment behavior. (c): The minimum relative distance never reaches the collision distance Dc, i.e., the achievement of the separation behavior. The
decrease of the maximum relative distance, starting from 123.3m, also shows the achievement of the cohesion behavior.

The simulation results are provided in Fig. 3. Fig. 3(a)
depicts the 3D position trajectories of the rigid body network
in Σw, which demonstrates the proposed controller achieves
the desired cohesion behavior with movement in the desired
direction. Fig. 3(b) illustrates the time responses of the
attitude angles around x- (red), y- (green), and z- (blue) axes
in Σw. This figure shows the achievement of the attitude
synchronization, i.e., the desired alignment behavior. We
finally provide the time responses of the maximum (mini-
mum) relative distance between rigid body pairs connected
by the edges of G (G′) in Fig. 3(c). This figure shows that
the minimum relative distance never reaches the collision
distance Dc, i.e., the achievement of the desired separation
behavior. The decrease of the maximum relative distance,
starting from 123.3m, also shows the achievement of the
desired cohesion behavior.

In summary, the proposed flocking algorithm (14), (15)
successfully achieves the desired cohesion, alignment, and
separation behaviors for the rigid body network.

B. Experimental Environment

The proposed flocking algorithm (14), (15) is validated
on the Robotarium, a remotely accessible swarm robotics
testbed [30]. The Robotarium enables users around the world
to control small differential-drive robots through code scripts
uploaded via a web interface. The pose data presented in
this section is tracking data from the Vicon motion cap-
ture system [31] mounted above the Robotarium testbed.
The controllable robots in the Robotarium are ground two-
wheeled vehicles with a nonholonomic constraint [22], i.e.,
the vehicles cannot move in the side direction. Therefore, we
demonstrate the effectiveness of the proposed algorithm as a
top level controller, that is, the algorithm provides reference
inputs and a local controller attempts to track the virtual
trajectory generated by the reference inputs.

The 3D pose gwi ∈ SE(3) is first reduced to the 2D one
g̃wi = (p̃wi, e1̂θwi) ∈ SE(2) := R2 × SO(2) as follows:

g̃wi =

[
e1̂θwi p̃wi

0 1

]
∈ R3×3, ˆ̃V b

wi =

[
ˆ̃ωb
wi ṽbwi

0 0

]
∈ R3×3.

Here, the operator ‘∧’ for a scalar value provides a matrix
on so(2) [22]. We note that even with this 2D model, the
same results as in Section III can be obtained.

This SE(2) model has the 2D translational velocity input
ṽbwi, but due to the motion constraints, the actual vehicle
testbed can generate only 1D longitudinal velocity. We thus
employ the pose regulation law for two-wheeled vehicles pre-
sented in [32] as the local controller, and flocking algorithm
(14), (15) is utilized as the top level controller to generate
the desired pose for the local one. Here, we calculate the
desired pose with the pose transition by supposing that the
top level controller input is applied for some time interval
T > 0.

C. Results

The parameters of the proposed flocking algorithm (14),
(15) are set as kp = 5, ke = 3, kc = 3, Dc = 0.3 [m],
Da = 0.5 [m], e1̂θwbvd = [0.18 0.08]T [m/s], and T = 0.2
[s]. Here, we set a larger value for Dc than the diameter of
the robots since the actual velocity input generated by the
local controller is different from that of the original flocking
controller. The rigid body network consists of 8 robots and
a cyclic undirected graph G.

The experimental results are provided in Fig. 4. Figs.
4(a) and 4(c) show that the rigid body network achieves
the cohesion and separation behaviors successfully. During
the experiment, the minimum relative distance between the
vehicles becomes lower than Dc sporadically but never
more than 2cm. This can be attributed to the differential
drive motion constraints of the platform and tracking error.
However, by making Dc slightly larger than the diameter
of the physical platform, these application complexities do
not cause physical collisions of the robots. Fig. 4(b) also
shows that the alignment behavior is almost achieved. Due
to the differential drive constraints of the robots, the attitude
synchronization takes longer and some oscillation appears in
this implementation, but after the position synchronization is
nearly achieved, the network achieves the attitude consensus
as well.

In summary, the proposed flocking algorithm (14), (15)
works well as a top level controller.
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Fig. 4. Experimental results. (a): The rigid body network achieves the cohesion behavior and moves in the desired direction. (b): Due to the differential drive
constraints of the robots, the attitude synchronization takes longer and some oscillation appears in this implementation, but after the position synchronization
is nearly achieved, the network achieves the attitude consensus as well. (c): The minimum relative distance between the vehicles becomes lower than Dc

sporadically but never more than 2cm, which does not cause physical collisions of the robots.

V. CONCLUSION

This paper presented a distributed 3D flocking control
algorithm for networked rigid bodies. The proposed method
captures Reynolds’s three fundamental flocking rules: cohe-
sion; alignment; and separation, and can be implemented by
each rigid body as a fully distributed system. The present
problem formulation handles the conflict between cohesion
and separation in optimization problems with relaxation
parameters for cohesion constraints. This paper also provided
theoretical guarantees for cohesion/alignment and separation
methods. The effectiveness of the proposed flocking algo-
rithm has been validated via 3D simulation and also demon-
strated as a high level controller through 2D experiments.

APPENDIX

A. Proof of Theorem 2

Proof: Define the potential function U := Up+Ua ≥ 0,

Up :=
1

4kp

∑
i∈V

∑
j∈Ni

∥pwi − pwj∥2 ≥ 0,

Ua :=
1

2ke

∑
i∈V

∑
j∈Ni

ϕ(eξ̂θij ) ≥ 0.

Then, the time derivative of Up yields

U̇p =
1

2kp

∑
i∈V

∑
j∈Ni

(pwi − pwj)
T(ṗwi − ṗwj)

=
1

kp

∑
i∈V

∑
j∈Ni

(pwi − pwj)
Tṗwi, (16)

where the second equality is given by the connectivity of the
interconnection topology G, i.e., j ∈ Ni ⇔ i ∈ Nj . Rigid
body motion (1) and the relative pose definition can rewrite
(16) using the relative positions and velocity inputs as

U̇p = − 1

kp

∑
i∈V

∑
j∈Ni

pT
ijv

b
wi.

Therefore, satisfying condition (11) for all i ∈ V yields

U̇p ≤ −
∑
i∈V

∥∥∥∥ ∑
j∈Ni

pij

∥∥∥∥2 ≤ 0.

Similarly to (16), the time derivative of Ua provides

U̇a = − 1

ke

∑
i∈V

∑
j∈Ni

(log(eξ̂θij )∨)Tωb
wi.

Here, we utilize the properties on the logarithmic map4:
ϕ̇(eξ̂θ) = (log(eξ̂θ)∨)Tωb; eξ̂θ log(eξ̂θ)∨ = log(eξ̂θ)∨; and
log(e−ξ̂θ) = − log(eξ̂θ), and the connectivity of G. There-
fore, the satisfaction of condition (12) for all i ∈ V yields

U̇a ≤ −
∑
i∈V

∥∥∥∥ ∑
j∈Ni

log(eξ̂θij )∨
∥∥∥∥2 ≤ 0.

In summary, we obtain

U̇ ≤ −
∑
i∈V

∥∥∥∥ ∑
j∈Ni

pij

∥∥∥∥2 −∑
i∈V

∥∥∥∥ ∑
j∈Ni

log(eξ̂θij )∨
∥∥∥∥2 ≤ 0.

Since V b
wi is chosen to be Lipschitz continuous, the LaSalle’s

Invariance Principle [27] can be applied to the convergence
analysis. Then, from the properties that log(eξ̂θ)∨ is bijective
for |θ| < π; log(eξ̂θ)∨ = 0 ⇔ eξ̂θ = I3; |θij(t)| < π ∀i, j ∈
V, t ≥ 0; and G is connected, U̇ = 0 is equivalent to pose
synchronization (2), which concludes the proof.

B. Proof of Theorem 3

Proof: Notice first that the attitude components of rigid
body motion (1) and the QP in (14) are independent of the
position ones. We thus obtain the following attitude synchro-
nization input from the Karush-Kuhn-Tucker condition [28]:

ωb
wi = ke

∑
j∈Ni

log(eξ̂θij )∨. (17)

Since this input satisfies condition (12) and collision avoid-
ance condition (8) is used in the QP in (14), attitude syn-
chronization (2b) and collision avoidance (3) are guaranteed
if |θij(t)| < π ∀i, j ∈ V is satisfied for all time t ≥ 0.

This attitude property is proved by the same technique as
Lemma 9.2 in [19]. We first note that the condition |θij(t)| <
π ∀i, j ∈ V is equivalent to the existence of θc ∈ R such

4Refer to [26] for the first property. The second and third properties can
be confirmed by direct calculations.



that |θwi(t)− θc| < π/2 ∀i ∈ V . Therefore, without loss of
generality, we show |θwi(t)| < π/2 ∀i ∈ V, t > 0 under
the initial condition |θwi(0)| < π/2 ∀i ∈ V . Notice also that
ϕ(eξ̂θ) = |θ|2 holds for |θ| < π [26]. Then, by denoting the
rigid body whose rotation angle is the largest by β(t) ∈ V ,
it is sufficient for the proof to show that ϕ(eξ̂θwβ(t)) does not
increase with respect to time in the region |θwβ(t)| < π/2.

The time derivative of ϕ(eξ̂θwβ ) along the trajectories of
(1) and (17) yields

ϕ̇(eξ̂θwβ ) = (log(eξ̂θwβ )∨)Tωb
wβ

= ke
∑
j∈Nβ

θwβ

sin θwβ

θβj
sin θβj

(sk(eξ̂θwβ )∨)Tsk(eξ̂θβj )∨.

Here, we use the property on the logarithmic map:
log(eξ̂θ)∨ = (θ/ sin θ)sk(eξ̂θ)∨ for |θ| < π, sk(eξ̂θ) :=

(1/2)(eξ̂θ − e−ξ̂θ) ∈ so(3) [26]. Then, since θ/ sin θ > 0
holds for |θ| < π, the same calculation technique as in the
proof of Lemma 9.2 in [19] yields

ϕ̇(eξ̂θwβ ) ≤ ke
∑
j∈Nβ

θwβ

sin θwβ

θβj
sin θβj

(
cos θwβ

− cos θwj − cos θwβ(1− cos θβj)
)
.

Finally, since 1 − cos θβj ≥ 0, cos θwβ > 0 (from
|θwβ | < π/2), and |θwβ | ≥ |θwj | (i.e., cos θwβ ≤ cos θwj)
hold for j ∈ Nβ from the definition of rigid body β, we
obtain ϕ̇(eξ̂θwβ ) ≤ 0, which completes the proof.
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